Forecasting Global Ionospheric TEC Using Deep Learning Approach
dc.contributor.author | Liu, Lei | |
dc.contributor.author | Zou, Shasha | |
dc.contributor.author | Yao, Yibin | |
dc.contributor.author | Wang, Zihan | |
dc.date.accessioned | 2020-12-02T14:36:58Z | |
dc.date.available | WITHHELD_12_MONTHS | |
dc.date.available | 2020-12-02T14:36:58Z | |
dc.date.issued | 2020-11 | |
dc.identifier.citation | Liu, Lei; Zou, Shasha; Yao, Yibin; Wang, Zihan (2020). "Forecasting Global Ionospheric TEC Using Deep Learning Approach." Space Weather 18(11): n/a-n/a. | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.issn | 1542-7390 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/163558 | |
dc.description.abstract | Global ionospheric total electron content (TEC) maps are widely utilized in research regarding ionospheric physics and the associated space weather impacts, so there is a great interest in the community in short‐term ionosphere TEC forecasting. In this study, the long short‐term memory (LSTM) neural network (NN) is applied to forecast the 256 spherical harmonic (SH) coefficients that are traditionally used to construct global ionospheric maps (GIM). Multiple input data, including historical time series of the SH coefficients, solar extreme ultraviolet (EUV) flux, disturbance storm time (Dst) index, and hour of the day, are used in the developed LSTM NN model. Different combinations of the above parameters have been used in constructing the LSTM NN model, and it is found that the model using all four parameters performs the best. Then the best performing LSTM model is used to forecast the SH coefficients, and the global hourly TEC maps are reproduced using the 256 predicted SH coefficients. A comprehensive evaluation is carried out with respect to the CODE GIM TEC. Results show that the first/second hour TEC root mean square error (RMSE) is 1.27/2.20 TECU during storm time and 0.86/1.51 TECU during quiet time, so the developed model performs well during both quiet and storm times. Moreover, typical ionospheric structures, such as equatorial ionization anomaly (EIA) and storm‐enhanced density (SED), are well reproduced in the predicted TEC maps during storm time. The developed model also shows competitive performance in predicting global TEC when compared to the persistence model and two empirical models (IRI‐2016 and NeQuick‐2).Key PointsThe LSTM neural network is adopted to predict the global ionosphere TECThe use of the external solar EUV flux and Dst index is able to improve the prediction performance of the spherical harmonic (SH) coefficientsThe developed LSTM model performs well during both quiet and storm conditions | |
dc.publisher | Academic Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.title | Forecasting Global Ionospheric TEC Using Deep Learning Approach | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Electrical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163558/2/swe21083.pdf | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163558/1/swe21083_am.pdf | en_US |
dc.identifier.doi | 10.1029/2020SW002501 | |
dc.identifier.source | Space Weather | |
dc.identifier.citedreference | Sun, W., Xu, L., Huang, X., Zhang, W., Yuan, T., Chen, Z., & Yan, Y. ( 2017, July). Forecasting of ionospheric vertical total electron content (TEC) using LSTM networks. In 2017 International Conference on Machine Learning and Cybernetics (ICMLC) (Vol. 2, pp. 340 – 344 ). IEEE. | |
dc.identifier.citedreference | García‐Rigo, A., Monte, E., Hernández‐Pajares, M., Juan, J. M., Sanz, J., Aragón‐Angel, A., & Salazar, D. ( 2011 ). Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Science, 46, RS0D25. https://doi.org/10.1029/2010RS004643 | |
dc.identifier.citedreference | Gers, F. A., Schmidhuber, J., & Cummins, F. ( 1999 ). Learning to forget: Continual prediction with LSTM. Neural Computation, 12 ( 10 ), 2451 – 2471. https://doi.org/10.1162/089976600300015015 | |
dc.identifier.citedreference | Habarulema, J. B., McKinnell, L. A., & Opperman, B. D. ( 2011 ). Regional GPS TEC modeling: Attempted spatial and temporal extrapolation of TEC using neural networks. Journal of Geophysical Research, 116, A04314. https://doi.org/10.1029/2010JA016269 | |
dc.identifier.citedreference | Hernández‐Pajares, M., Juan, J. M., Sanz, J., Orus, R., Garcia‐Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., & Krankowski, A. ( 2009 ). The IGS VTEC maps: A reliable source of ionospheric information since 1998. Journal of Geodesy, 83 ( 3 ), 263 – 275. https://doi.org/10.1007/s00190‐008‐0266‐1 | |
dc.identifier.citedreference | Hochreiter, S., & Schmidhuber, J. ( 1997 ). Long short‐term memory. Neural Computation, 9 ( 8 ), 1735 – 1780. https://doi.org/10.1162/neco.1997.9.8.1735 | |
dc.identifier.citedreference | Kleissl, J. ( 2013 ). Solar energy forecasting and resource assessment. Oxford: Academic Press. | |
dc.identifier.citedreference | Li, Z., Yuan, Y., Wang, N., Hernandez‐Pajares, M., & Huo, X. ( 2015 ). SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. Journal of Geodesy, 89 ( 4 ), 331 – 345. https://doi.org/10.1007/s00190‐014‐0778‐9 | |
dc.identifier.citedreference | Liu, L., Yao, Y., Zou, S., Kong, J., Shan, L., Zhai, C., Zhao, C., & Wang, Y. ( 2019 ). Ingestion of GIM‐derived TEC data for updating IRI‐2016 driven by effective IG indices over the European region. Journal of Geodesy, 93 ( 10 ), 1911 – 1930. https://doi.org/10.1007/s00190‐019‐01291‐5 | |
dc.identifier.citedreference | Liu, L., Zou, S., Yao, Y., & Aa, E. ( 2020 ). Multi‐scale ionosphere responses to the May 2017 magnetic storm over the Asian sector. GPS Solutions, 24 ( 1 ), 26. https://doi.org/10.1007/s10291‐019‐0940‐1 | |
dc.identifier.citedreference | Nava, B., Coisson, P., & Radicella, S. M. ( 2008 ). A new version of the NeQuick ionosphere electron density model. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 15 ), 1856 – 1862. https://doi.org/10.1016/j.jastp.2008.01.015 | |
dc.identifier.citedreference | Poole, A. W. V., & McKinnell, L. A. ( 2000 ). On the predictability of foF2 using neural networks. Radio Science, 35 ( 1 ), 225 – 234. https://doi.org/10.1029/1999RS900105 | |
dc.identifier.citedreference | Schaer, S. ( 1999 ). Mapping and predicting the Earth’s ionosphere using the global positioning system. Ph.D. thesis, Ph.D. dissertation. Univ. of Bern, Bern | |
dc.identifier.citedreference | Srivani, I., Prasad, G. S. V., & Ratnam, D. V. ( 2019 ). A deep learning‐based approach to forecast Ionospheric delays for GPS signals. IEEE Geoscience and Remote Sensing Letters, 16 ( 8 ), 1180 – 1184. https://doi.org/10.1109/LGRS.2019.2895112 | |
dc.identifier.citedreference | Tulunay, E., Senalp, E. T., Radicella, S. M., & Tulunay, Y. ( 2006 ). Forecasting total electron content maps by neural network technique. Radio Science, 41, RS003285. https://doi.org/10.1029/2005RS003285 | |
dc.identifier.citedreference | Wang, C., Xin, S., Liu, X., Shi, C., & Fan, L. ( 2018 ). Prediction of global ionospheric VTEC maps using an adaptive autoregressive model. Earth, Planets and Space, 70 ( 1 ), 18. https://doi.org/10.1186/s40623‐017‐0762‐8 | |
dc.identifier.citedreference | Yao, Y., Liu, L., Kong, J., & Zhai, C. ( 2018 ). Global ionospheric modeling based on multi‐GNSS, satellite altimetry, and Formosat‐3/COSMIC data. GPS Solut, 22 ( 4 ), 104. https://doi.org/10.1007/s10291‐018‐0770‐6 | |
dc.identifier.citedreference | Zou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm‐enhanced density plumes: Role of the convection flow and field‐aligned ion flow: Generation and decay of SED plumes. Journal of Geophysical Research: Space Physics, 119, 8543 – 8559. https://doi.org/10.1002/2014JA020408 | |
dc.identifier.citedreference | Zou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi‐instrument observations of SED during 24‐25 October 2011 storm: Implications for SED formation processes: SED formation processes. Journal of Geophysical Research: Space Physics, 118, 7798 – 7809. https://doi.org/10.1002/2013JA018860 | |
dc.identifier.citedreference | Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. ( 2017 ). International reference ionosphere 2016: From ionospheric climate to real‐time weather predictions. Space Weather, 15, 418 – 429. https://doi.org/10.1002/2016SW001593 | |
dc.identifier.citedreference | Boulch, A., Cherrier, N., & Castaings, T. ( 2018 ). Ionospheric activity prediction using convolutional recurrent neural networks. arXiv preprint arXiv:1810.13,273. | |
dc.identifier.citedreference | Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2007 ). Flare irradiance spectral model (FISM): Daily component algorithms and results. Space Weather, 5, S07005. https://doi.org/10.1029/2007SW000316 | |
dc.identifier.citedreference | Chamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2008 ). Flare Irradiance Spectral Model (FISM): Flare component algorithms and results. Space Weather, 6, S05001. https://doi.org/10.1029/2007SW000372 | |
dc.identifier.citedreference | Chen, Y., Manchester, W. B., Hero, A. O., Toth, G., DuFumier, B., Zhou, T., Wang, X., Zhu, H., Sun, Z., & Gombosi, T. I. ( 2019 ). Identifying solar flare precursors using time series of sdo/hmi images and sharp parameters. Space Weather, 17, 1404 – 1426. https://doi.org/10.1029/2019SW002214 | |
dc.identifier.citedreference | Foster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1689. https://doi.org/10.1029/92JA02032 | |
dc.identifier.citedreference | Foster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., McCready, M., van Eyken, A., Barnes, R. J., Greenwald, R. A., & Rich, F. J. ( 2005 ). Multiradar observations of the polar tongue of ionization: Multiradar observations. Journal of Geophysical Research, 110, A09S31. https://doi.org/10.1029/2004JA010928 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.