Show simple item record

[Ga3+8Sm3+2, Ga3+8Tb3+2] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures

dc.contributor.authorSalerno, Elvin V.
dc.contributor.authorZeler, Justyna
dc.contributor.authorEliseeva, Svetlana V.
dc.contributor.authorHernández‐rodríguez, Miguel A.
dc.contributor.authorCarneiro Neto, Albano N.
dc.contributor.authorPetoud, Stéphane
dc.contributor.authorPecoraro, Vincent L.
dc.contributor.authorCarlos, Luís D.
dc.date.accessioned2020-12-02T14:38:01Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:38:01Z
dc.date.issued2020-11-02
dc.identifier.citationSalerno, Elvin V.; Zeler, Justyna; Eliseeva, Svetlana V.; Hernández‐rodríguez, Miguel A. ; Carneiro Neto, Albano N.; Petoud, Stéphane ; Pecoraro, Vincent L.; Carlos, Luís D. (2020). "[Ga3+8Sm3+2, Ga3+8Tb3+2] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures." Chemistry - A European Journal 26(61): 13792-13796.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/163582
dc.description.abstractNanothermometry is the study of temperature at the submicron scale with a broad range of potential applications, such as cellular studies or electronics. Molecular luminescent- based nanothermometers offer a non- contact means to record these temperatures with high spatial resolution and thermal sensitivity. A luminescent- based molecular thermometer comprised of visible- emitting Ga3+/Tb3+ and Ga3+/Sm3+ metallacrowns (MCs) achieved remarkable relative thermal sensitivity associated with very low temperature uncertainty of Sr=1.9- %- K- 1 and δT<0.045- K, respectively, at 328- K, as an aqueous suspension of polystyrene nanobeads loaded with the corresponding MCs. To date, they are the ratiometric molecular nanothermometers offering the highest level of sensitivity in the physiologically relevant temperature range.Metallacrown- based thermometry: Mixtures of luminescent Ga3+/Tb3+ and Ga3+/Sm3+ metallacrowns proved to be highly sensitive luminescent molecular thermometers. These were placed in polystyrene nanobeads for aqueous stabilization and demonstrate the promise of a molecular approach to nanothermometry.
dc.publisherWiley Periodicals, Inc.
dc.publisherElsevier
dc.subject.otherluminescence
dc.subject.otherlanthanides
dc.subject.othermetallacrowns
dc.subject.othernanoparticles
dc.subject.othernanothermometry
dc.title[Ga3+8Sm3+2, Ga3+8Tb3+2] Metallacrowns are Highly Promising Ratiometric Luminescent Molecular Nanothermometers Operating at Physiologically Relevant Temperatures
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163582/3/chem202003239.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163582/2/chem202003239-sup-0001-misc_information.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163582/1/chem202003239_am.pdfen_US
dc.identifier.doi10.1002/chem.202003239
dc.identifier.sourceChemistry - A European Journal
dc.identifier.citedreferenceG. Bao, K. L. Wong, D. Jin, P. A. Tanner, Light Sci. Appl. 2018, 7, 96.
dc.identifier.citedreferenceM. Quintanilla, L. M. Liz-Marzán, Nano Today 2018, 19, 126 - 145.
dc.identifier.citedreferenceEditorial, Nat. Photonics 2009, 3, 361.
dc.identifier.citedreferenceD. Cauzzi, R. Pattacini, M. Delferro, F. Dini, C. Di Natale, R. Paolesse, S. Bonacchi, M. Montalti, N. Zaccheroni, M. Calvaresi, F. Zerbetto, L. Prodi, Angew. Chem. Int. Ed. 2012, 51, 9662 - 9665; Angew. Chem. 2012, 124, 9800 - 9803.
dc.identifier.citedreferenceF. Vetrone, R. Naccache, A. Zamarrón, A. J. De La Fuente, F. Sanz-Rodríguez, L. M. Maestro, E. M. Rodriguez, D. Jaque, J. G. Sole, J. A. Capobianco, ACS Nano 2010, 4, 3254 - 3258.
dc.identifier.citedreferenceK. Oyama, M. Takabayashi, Y. Takei, S. Arai, S. Takeoka, S. Ishiwata, M. Suzuki, Lab Chip 2012, 12, 1591 - 1593.
dc.identifier.citedreferenceH. Wang, D. Zhao, Y. Cui, Y. Yang, G. Qian, J. Solid State Chem. 2017, 246, 341 - 345.
dc.identifier.citedreferenceA. V. Shamsieva, I. E. Kolesnikov, I. D. Strelnik, T. P. Gerasimova, A. A. Kalinichev, S. A. Katsyuba, E. I. Musina, E. Lähderanta, A. A. Karasik, O. G. Sinyashin, J. Phys. Chem. C 2019, 123, 25863 - 25870.
dc.identifier.citedreferenceC. D. S. Brites, S. Balabhadra, L. D. Carlos, Adv. Opt. Mater. 2019, 7, 1801239.
dc.identifier.citedreferenceJ.-C. G. Bünzli, Coord. Chem. Rev. 2015, 293, 19 - 47.
dc.identifier.citedreferenceY. Zhou, B. Yan, F. Lei, Chem. Commun. 2014, 50, 15235 - 15238.
dc.identifier.citedreferenceZ. Wang, D. Ananias, A. Carné-Sánchez, C. D. S. Brites, I. Imaz, D. Maspoch, J. Rocha, L. D. Carlos, Adv. Funct. Mater. 2015, 25, 2824 - 2830.
dc.identifier.citedreferenceM. Quintanilla, A. Benayas, R. Naccache, F. Vetrone in Thermometry at the Nanoscale: Techniques and Selected Applications (Eds.: L.- D. Carlos, F. Palacio ), Royal Society Of Chemistry, Cambridge, 2016, pp.- 124 - 166.
dc.identifier.citedreferenceC. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, L. D. Carlos, Nanoscale 2013, 5, 7572 - 7580.
dc.identifier.citedreferenceD. A. Gálico, R. Marin, G. Brunet, D. Errulat, E. Hemmer, F. A. Sigoli, J. O. Moilanen, M. Murugesu, Chem. Eur. J. 2019, 25, 14625 - 14637.
dc.identifier.citedreferenceE. Kasprzycka, A. N. Carneiro Neto, V. A. Trush, L. Jerzykiewicz, V. M. Amirkhanov, O. L. Malta, J. Legendziewicz, P. Gawryszewska, J. Rare Earths 2020, 38, 552 - 563.
dc.identifier.citedreferenceT. N. Nguyen, C. Y. Chow, S. V. Eliseeva, E. R. Trivedi, J. W. Kampf, I. MartiniÄ , S. Petoud, V. L. Pecoraro, Chem. Eur. J. 2018, 24, 1031 - 1035.
dc.identifier.citedreferenceO. L. Malta, J. Lumin. 1997, 71, 229 - 236.
dc.identifier.citedreferenceK. Rademaker, W. F. Krupke, R. H. Page, S. A. Payne, K. Petermann, G. Huber, A. P. Yelisseyev, L. I. Isaenko, U. N. Roy, A. Burger, J. Opt. Soc. Am. B 2004, 21, 2117.
dc.identifier.citedreferenceD. Zhao, J. Zhang, D. Yue, X. Lian, Y. Cui, Y. Yang, G. Qian, Chem. Commun. 2016, 52, 8259 - 8262.
dc.identifier.citedreferenceL. Zhang, Y. Xie, T. Xia, Y. Cui, Y. Yang, G. Qian, J. Rare Earths 2018, 36, 561 - 566.
dc.identifier.citedreferenceE. C. Ximendes, U. Rocha, T. O. Sales, N. Fernández, F. Sanz-Rodríguez, I. R. Martín, C. Jacinto, D. Jaque, Adv. Funct. Mater. 2017, 27, 1702249.
dc.identifier.citedreferenceE. R. Trivedi, S. V. Eliseeva, J. Jankolovits, M. M. Olmstead, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2014, 136, 1526 - 1534.
dc.identifier.citedreferenceC. Y. Chow, S. V. Eliseeva, E. R. Trivedi, T. N. Nguyen, J. W. Kampf, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2016, 138, 5100 - 5109.
dc.identifier.citedreferenceI. MartiniÄ , S. V. Eliseeva, T. N. Nguyen, V. L. Pecoraro, S. Petoud, J. Am. Chem. Soc. 2017, 139, 8388 - 8391.
dc.identifier.citedreferenceC. D. S. Brites, P. P. Lima, L. D. Carlos, J. Lumin. 2016, 169, 497 - 502.
dc.identifier.citedreferenceR. Zhang, X. Qin, F. Kong, P. Chen, G. Pan, Drug Delivery 2019, 26, 328 - 342.
dc.identifier.citedreferenceA. N. Carneiro Neto, E. E. S. Teotonio, G. F. de Sá, H. F. Brito, J. Legendziewicz, L. D. Carlos, M. C. F. C. Felinto, P. Gawryszewska, R. T. Moura,- Jr., R. L. Longo, W. M. Faustonp, O. L. Malta in Handbook on the Physics and Chemistry of Rare Earths (Eds.: J.-C.- G. Bünzli, V.- K. Pecharsky ), Elsevier, Amsterdam, 2019, pp.- 55 - 162.
dc.identifier.citedreferenceA. S. Souza, L. A. Nunes, M. C. F. C. Felinto, H. F. Brito, O. L. Malta, J. Lumin. 2015, 167, 167 - 171.
dc.identifier.citedreferenceU. N. Roy, R. H. Hawrami, Y. Cui, S. Morgan, A. Burger, K. C. Mandal, C. C. Noblitt, S. A. Speakman, K. Rademaker, S. A. Payne, Appl. Phys. Lett. 2005, 86, 151911.
dc.identifier.citedreferenceC. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, L. D. Carlos, Front. Chem. 2013, 1, 1 - 6.
dc.identifier.citedreferenceE. M. Graham, K. Iwai, S. Uchiyama, A. Prasanna De Silva, S. W. Magennis, A. C. Jones, Lab Chip 2010, 10, 1267 - 1273.
dc.identifier.citedreferenceL. M. Maestro, P. Haro-Gonzalez, M. C. I. la Cruz, F. Sanz-Rodriguez, A. Juarranz, J. G. Sole, D. Jaque, Nanomedicine 2013, 8, 379 - 388.
dc.identifier.citedreferenceS. Arai, M. Suzuki, S.-J. Park, J. S. Yoo, L. Wang, N.-Y. Kang, H.-H. Ha, Y.-T. Chang, Chem. Commun. 2015, 51, 8044 - 8047.
dc.identifier.citedreferenceC. D. S. Brites, A. Millán, L. D. Carlos in Handbook on the Physics and Chemistry of Rare Earths (Eds.: J.-C.- G. Bünzli, V.- K. Pecharsky ), Elsevier, Amsterdam, 2016, pp.- 339 - 427.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.