Show simple item record

Spin Transitions and Compressibility of ε‐Fe7N3 and γ′‐Fe4N: Implications for Iron Alloys in Terrestrial Planet Cores

dc.contributor.authorLv, Mingda
dc.contributor.authorLiu, Jiachao
dc.contributor.authorZhu, Feng
dc.contributor.authorLi, Jie
dc.contributor.authorZhang, Dongzhou
dc.contributor.authorXiao, Yuming
dc.contributor.authorDorfman, Susannah M.
dc.date.accessioned2020-12-02T14:38:07Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:38:07Z
dc.date.issued2020-11
dc.identifier.citationLv, Mingda; Liu, Jiachao; Zhu, Feng; Li, Jie; Zhang, Dongzhou; Xiao, Yuming; Dorfman, Susannah M. (2020). "Spin Transitions and Compressibility of ε‐Fe7N3 and γ′‐Fe4N: Implications for Iron Alloys in Terrestrial Planet Cores." Journal of Geophysical Research: Solid Earth 125(11): n/a-n/a.
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/2027.42/163586
dc.description.abstractIron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3 and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3 and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3 by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yields V0 = 83.29 ± 0.03 (Å3), K0 = 232 ± 9 GPa, K0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3 above the spin transition completion pressure, and V0 = 54.82 ± 0.02 (Å3), K0 = 152 ± 2 GPa, K0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3 induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth’s and planetary cores.Key PointsSpin transition in ε‐Fe7N3 and γ′‐Fe4N at 300 K completes at 43 and 34 GPa, respectivelyThe completion of spin transition leads to stiffening in bulk modulus of ε‐Fe7N3, but not in γ′‐Fe4NEvidence for spin transitions in Fe‐light‐element alloys and their effects are reexamined
dc.publisherWiley Periodicals, Inc.
dc.publisherAnnual Reviews
dc.titleSpin Transitions and Compressibility of ε‐Fe7N3 and γ′‐Fe4N: Implications for Iron Alloys in Terrestrial Planet Cores
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163586/2/jgrb54505_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163586/1/jgrb54505.pdfen_US
dc.identifier.doi10.1029/2020JB020660
dc.identifier.sourceJournal of Geophysical Research: Solid Earth
dc.identifier.citedreferenceSagatov, N., Gavryushkin, P. N., Inerbaev, T. M., & Litasov, K. D. ( 2019 ). New high‐pressure phases of Fe 7 N 3 and Fe 7 C 3 stable at Earth’s core conditions: Evidences for carbon–nitrogen isomorphism in Fe‐compounds. RSC Advances, 9 ( 7 ), 3577 – 3581. https://doi.org/10.1039/c8ra09942a
dc.identifier.citedreferenceSata, N., Hirose, K., Shen, G., Nakajima, Y., Ohishi, Y., & Hirao, N. ( 2010 ). Compression of FeSi, Fe 3 C, Fe 0.95 O, and FeS under the core pressures and implication for light element in the Earth’s core. Journal of Geophysical Research, 115, B09204. https://doi.org/10.1029/2009JB006975
dc.identifier.citedreferenceScott, H. P., Huggins, S., Frank, M. R., Maglio, S. J., Martin, C. D., Meng, Y., Santillán, J., & Williams, Q. ( 2007 ). Equation of state and high‐pressure stability of Fe 3 P‐schreibersite: Implications for phosphorus storage in planetary cores. Geophysical Research Letters, 34, L06302. https://doi.org/10.1029/2006GL029160
dc.identifier.citedreferenceSeagle, C. T., Campbell, A. J., Heinz, D. L., Shen, G., & Prakapenka, V. B. ( 2006 ). Thermal equation of state of Fe 3 S and implications for sulfur in Earth’s core. Journal of Geophysical Research, 111, B06209. https://doi.org/10.1029/2005JB004091
dc.identifier.citedreferenceSeto, Y., Nishio‐Hamane, D., Nagai, T., & Sata, N. ( 2010 ). Development of a software suite on X‐ray diffraction experiments. The Review of High Pressure Science and Technology, 20 ( 3 ), 269 – 276. https://doi.org/10.4131/jshpreview.20.269
dc.identifier.citedreferenceShahar, A., Schauble, E. A., Caracas, R., Gleason, A. E., Reagan, M. M., Xiao, Y., Shu, J., & Mao, W. ( 2016 ). Pressure‐dependent isotopic composition of iron alloys. Science, 352 ( 6285 ), 580 – 582. https://doi.org/10.1126/science.aad9945
dc.identifier.citedreferenceShen, G., Lin, J. F., Fei, Y., Mao, H. K., Hu, M., & Chow, P. ( 2003 ). Magnetic and structural transition in Fe 3 S at high pressures. Eos Transactions of American Geophysical Union, 84 ( 46 ), F1548 – F1549.
dc.identifier.citedreferenceShi, Y.‐J., Du, Y.‐L., & Chen, G. ( 2013 ). First‐principles study on the elastic and electronic properties of hexagonal ε‐Fe3N. Computational Materials Science, 67, 341 – 345. https://doi.org/10.1016/j.commatsci.2012.09.012
dc.identifier.citedreferenceSifkovits, M., Smolinski, H., Hellwig, S., & Weber, W. ( 1999 ). Interplay of chemical bonding and magnetism in Fe 4 N, Fe 3 N and zeta‐Fe 2 N. Journal of Magnetism and Magnetic Materials, 204 ( 3 ), 191 – 198. https://doi.org/10.1016/S0304‐8853(99)00296‐6
dc.identifier.citedreferenceStevenson, D. J. ( 2001 ). Mars’ core and magnetism. Nature, 412 ( 6843 ), 214 – 219. https://doi.org/10.1038/35084155
dc.identifier.citedreferenceTakemura, K., & Dewaele, A. ( 2008 ). Isothermal equation of state for gold with a He‐pressure medium. Physical Review B, 78 ( 10 ). https://doi.org/10.1103/PhysRevB.78.104119
dc.identifier.citedreferenceToby, B. H. ( 2001 ). EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 34 ( 2 ), 210 – 213. https://doi.org/10.1107/S0021889801002242
dc.identifier.citedreferenceVocadlo, L., Brodholt, J., Dobson, D. P., Knight, K. S., Marshall, W. G., Price, G. D., & Wood, I. G. ( 2002 ). The effect of ferromagnetism on the equation of state of Fe 3 C studied by first‐principles calculations. Earth and Planetary Science Letters, 203 ( 1 ), 567 – 575. https://doi.org/10.1016/S0012‐821x(02)00839‐7
dc.identifier.citedreferenceWetzel, M. H., Schwarz, M. R., & Leineweber, A. ( 2019 ). High‐pressure high‐temperature study of the pressure induced decomposition of the iron nitride γ′‐Fe 4 N. Journal of Alloys and Compounds. https://doi.org/10.1016/j.jallcom.2019.06.078
dc.identifier.citedreferenceWidenmeyer, M., Hansen, T. C., Meissner, E., & Niewa, R. ( 2014 ). Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysis. Zeitschrift für Anorganische und Allgemeine Chemie, 640 ( 7 ), 1265 – 1274. https://doi.org/10.1002/zaac.201300676
dc.identifier.citedreferenceWriedt, H., Gokcen, N., & Nafziger, R. ( 1987 ). The Fe‐N (iron‐nitrogen) system. Bulletin of Alloy Phase Diagrams, 8 ( 4 ), 355 – 377.
dc.identifier.citedreferenceYoder, C. F., Konopliv, A. S., Yuan, D. N., Standish, E. M., & Folkner, W. M. ( 2003 ). Fluid core size of Mars from detection of the solar tide. Science, 300 ( 5617 ), 299 – 303. https://doi.org/10.1126/science.1079645
dc.identifier.citedreferenceZedgenizov, D. A., & Litasov, K. D. ( 2017 ). Looking for “missing” nitrogen in the deep Earth. American Mineralogist, 102 ( 9 ), 1769 – 1770.
dc.identifier.citedreferenceZhang, W. H., Lv, Z. Q., Shi, Z. P., Sun, S. H., Wang, Z. H., & Fu, W. T. ( 2012 ). Electronic, magnetic and elastic properties of ε‐phases Fe 3 X(X = B, C, N) from density‐functional theory calculations. Journal of Magnetism and Magnetic Materials, 324 ( 14 ), 2271 – 2276. https://doi.org/10.1016/j.jmmm.2012.02.114
dc.identifier.citedreferenceDziewonski, A. M., & Anderson, D. L. ( 1981 ). Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25 ( 4 ), 297 – 356. https://doi.org/10.1016/0031‐9201(81)90046‐7
dc.identifier.citedreferenceNakajima, Y., Takahashi, E., Sata, N., Nishihara, Y., Hirose, K., Funakoshi, K., & Ohishi, Y. ( 2011 ). Thermoelastic property and high‐pressure stability of Fe 7 C 3: Implication for iron‐carbide in the Earth’s core. American Mineralogist, 96 ( 7 ), 1158 – 1165. https://doi.org/10.2138/am.2011.3703
dc.identifier.citedreferenceSakai, T., Takahashi, S., Nishitani, N., Mashino, I., Ohtani, E., & Hirao, N. ( 2014 ). Equation of state of pure iron and Fe 0.9 Ni 0.1 alloy up to 3 Mbar. Physics of the Earth and Planetary Interiors, 228, 114 – 126. https://doi.org/10.1016/j.pepi.2013.12.010
dc.identifier.citedreferenceThompson, S., Komabayashi, T., Breton, H., Suehiro, S., Glazyrin, K., Pakhomova, A., & Ohishi, Y. ( 2020 ). Compression experiments to 126 GPa and 2500 K and thermal equation of state of Fe 3 S: Implications for sulphur in the Earth’s core. Earth and Planetary Science Letters, 534. https://doi.org/10.1016/j.epsl.2020.116080
dc.identifier.citedreferenceAdler, J. F., & Williams, Q. ( 2005 ). A high‐pressure X‐ray diffraction study of iron nitrides: Implications for Earth’s core. Journal of Geophysical Research, 110, B01203. https://doi.org/10.1029/2004JB003103
dc.identifier.citedreferenceAngel, R. J. ( 2000 ). Equations of state. High‐Temperature and High‐Pressure Crystal Chemistry, 41 ( 1 ), 35 – 59. https://doi.org/10.2138/rmg.2000.41.2
dc.identifier.citedreferenceBadro, J., Fiquet, G., Guyot, F., Rueff, J. P., Struzhkin, V. V., Vanko, G., & Monaco, G. ( 2003 ). Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300 ( 5620 ), 789 – 791. https://doi.org/10.1126/science.1081311
dc.identifier.citedreferenceBadro, J., Fiquet, G., Struzhkin, V. V., Somayazulu, M., Mao, H. K., Shen, G., & Le Bihan, T. ( 2002 ). Nature of the high‐pressure transition in Fe 2 O 3 hematite. Physical Review Letters, 89 ( 20 ), 205,504. https://doi.org/10.1103/PhysRevLett.89.205504
dc.identifier.citedreferenceBadro, J., Rueff, J. P., Vanko, G., Monaco, G., Fiquet, G., & Guyot, F. ( 2004 ). Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305 ( 5682 ), 383 – 386. https://doi.org/10.1126/science.1098840
dc.identifier.citedreferenceBirch, F. ( 1952 ). Elasticity and constitution of the Earth’s interior. Journal of Geophysical Research, 57 ( 2 ), 227 – 286. https://doi.org/10.1029/JZ057i002p00227
dc.identifier.citedreferenceBreton, H., Komabayashi, T., Thompson, S., Potts, N., McGuire, C., Suehiro, S., Anzellini, S., & Ohishi, Y. ( 2019 ). Static compression of Fe 4 N to 77 GPa and its implications for nitrogen storage in the deep Earth. American Mineralogist, 104 ( 12 ), 1781 – 1787. https://doi.org/10.2138/am‐2019‐7065
dc.identifier.citedreferenceBreuer, D., Rueckriemen, T., & Spohn, T. ( 2015 ). Iron snow, crystal floats, and inner‐core growth: Modes of core solidification and implications for dynamos in terrestrial planets and moons. Progress in Earth and Planetary Science, 2 ( 1 ). https://doi.org/10.1186/s40645‐015‐0069‐y
dc.identifier.citedreferenceCaracas, R. ( 2016 ). Crystal structures of Core materials. Deep Earth: Physics and Chemistry of the Lower Mantle and Core, 217, 57 – 68.
dc.identifier.citedreferenceChen, B., Gao, L., Funakoshi, K., & Li, J. ( 2007 ). Thermal expansion of iron‐rich alloys and implications for the Earth’s core. Proceedings of the National Academy of Sciences, 104 ( 22 ), 9162 – 9167. https://doi.org/10.1073/pnas.0610474104
dc.identifier.citedreferenceChen, B., Gao, L. L., Lavina, B., Dera, P., Alp, E. E., Zhao, J. Y., & Li, J. ( 2012 ). Magneto‐elastic coupling in compressed Fe 7 C 3 supports carbon in Earth’s inner core. Geophysical Research Letters, 39, L18301. https://doi.org/10.1029/2012GL052875
dc.identifier.citedreferenceChen, B., Lai, X. J., Li, J., Liu, J. C., Zhao, J. Y., Bi, W. L., Alp, E. E., Hu, M. Y., & Xiao, Y. ( 2018 ). Experimental constraints on the sound velocities of cementite Fe 3 C to core pressures. Earth and Planetary Science Letters, 494, 164 – 171. https://doi.org/10.1016/j.epsl.2018.05.002
dc.identifier.citedreferenceChen, B., & Li, J. ( 2016 ). Carbon in the core. Deep Earth: Physics and Chemistry of the Lower Mantle and Core, 277 – 288.
dc.identifier.citedreferenceChen, B., Li, J., & Hauck, S. A. ( 2008 ). Non‐ideal liquidus curve in the Fe‐S system and Mercury’s snowing core. Geophysical Research Letters, 35, L07201. https://doi.org/10.1029/2008GL033311
dc.identifier.citedreferenceChen, B., Li, Z., Zhang, D., Liu, J., Hu, M. Y., Zhao, J., Bi, W., Alp, E. E., Xiao, Y., Chow, P., & Li, J. ( 2014 ). Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe 7 C 3. Proceedings of the National Academy of Sciences, 111 ( 50 ), 17,755 – 17,758. https://doi.org/10.1073/pnas.1411154111
dc.identifier.citedreferenceCosta‐Krämer, J. L., Borsa, D. M., García‐Martín, J. M., Martín‐González, M. S., Boerma, D. O., & Briones, F. ( 2004 ). Structure and magnetism of single‐phase epitaxial γ′−Fe4N. Physical Review B, 69 ( 14 ). https://doi.org/10.1103/PhysRevB.69.144402
dc.identifier.citedreferenceDauphas, N., John, S. G., & Rouxel, O. ( 2017 ). Iron isotope systematics. Reviews in Mineralogy and Geochemistry, 82 ( 1 ), 415 – 510.
dc.identifier.citedreferenceDe Waele, S., Lejaeghere, K., Leunis, E., Duprez, L., & Cottenier, S. ( 2019 ). A first‐principles reassessment of the Fe‐N phase diagram in the low‐nitrogen limit. Journal of Alloys and Compounds, 775, 758 – 768. https://doi.org/10.1016/j.jallcom.2018.09.356
dc.identifier.citedreferenceDewaele, A., Loubeyre, P., Occelli, F., Mezouar, M., Dorogokupets, P. I., & Torrent, M. ( 2006 ). Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters, 97 ( 21 ), 215,504. https://doi.org/10.1103/PhysRevLett.97.215504
dc.identifier.citedreferenceDirba, I., Yazdi, M. B., Radetinac, A., Komissinskiy, P., Flege, S., Gutfleisch, O., & Alff, L. ( 2015 ). Growth, structure, and magnetic properties of γ ’‐FeN 4 thin films. Journal of Magnetism and Magnetic Materials, 379, 151 – 155. https://doi.org/10.1016/j.jmmm.2014.12.033
dc.identifier.citedreferencedos Santos, A. V., & Samudio Pérez, C. A. ( 2016 ). Ab initio investigation of the substitution effects of 2 p elements on the electronic structure of γ ‐Fe 4 X (X% = B, C, N, and O) in the ground state. Journal of Materials Research, 31 ( 2 ), 202 – 212. https://doi.org/10.1557/jmr.2015.394
dc.identifier.citedreferenceDubrovinsky, L., Dubrovinskaia, N., Abrikosov, I. A., Vennstrom, M., Westman, F., Carlson, S., van Schilfgaarde, M., & Johansson, B. ( 2001 ). Pressure‐induced invar effect in Fe‐Ni alloys. Physical Review Letters, 86 ( 21 ), 4851 – 4854. https://doi.org/10.1103/PhysRevLett.86.4851
dc.identifier.citedreferenceFei, Y., & Bertka, C. ( 2005 ). Planetary science. The interior of Mars. Science, 308 ( 5725 ), 1120 – 1121. https://doi.org/10.1126/science.1110531
dc.identifier.citedreferenceFei, Y., Ricolleau, A., Frank, M., Mibe, K., Shen, G., & Prakapenka, V. ( 2007 ). Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences, 104 ( 22 ), 9182 – 9186. https://doi.org/10.1073/pnas.0609013104
dc.identifier.citedreferenceGenova, A., Goossens, S., Mazarico, E., Lemoine, F. G., Neumann, G. A., Kuang, W., Sabaka, T. J., Hauck, SA II, Smith, D. E., Solomon, S. C., & Zuber, M. T. ( 2019 ). Geodetic evidence that Mercury has a solid inner core. Geophysical Research Letters, 46, 3625 – 3633. https://doi.org/10.1029/2018GL081135
dc.identifier.citedreferenceGressmann, T., Wohlschlögel, M., Shang, S., Welzel, U., Leineweber, A., Mittemeijer, E. J., & Liu, Z. K. ( 2007 ). Elastic anisotropy of γ′‐Fe 4 N and elastic grain interaction in γ′‐Fe 4 N 1−y layers on α‐Fe: First‐principles calculations and diffraction stress measurements. Acta Materialia, 55 ( 17 ), 5833 – 5843. https://doi.org/10.1016/j.actamat.2007.07.001
dc.identifier.citedreferenceGu, T., Fei, Y., Wu, X., & Qin, S. ( 2014 ). High‐pressure behavior of Fe 3 P and the role of phosphorus in planetary cores. Earth and Planetary Science Letters, 390, 296 – 303. https://doi.org/10.1016/j.epsl.2014.01.019
dc.identifier.citedreferenceGu, T., Fei, Y., Wu, X., & Qin, S. ( 2016 ). Phase stabilities and spin transitions of Fe 3 (S 1−x P x ) at high pressure and its implications in meteorites. American Mineralogist, 101 ( 1 ), 205 – 210. https://doi.org/10.2138/am‐2016‐5466
dc.identifier.citedreferenceGuo, K., Rau, D., von Appen, J., Prots, Y., Schnelle, W., Dronskowski, R., Niewa, R., & Schwarz, U. ( 2013 ). High pressure high‐temperature behavior and magnetic properties of Fe 4 N: Experiment and theory. High Pressure Research, 33 ( 3 ), 684 – 696. https://doi.org/10.1080/08957959.2013.809715
dc.identifier.citedreferenceHirose, K., Labrosse, S., & Hernlund, J. ( 2013 ). Composition and state of the core. In R. Jeanloz (Ed.), Annual Review of Earth and Planetary Sciences (Vol. 41, pp. 657 – 691 ). Palo Alto: Annual Reviews.
dc.identifier.citedreferenceHrubiak, R., Sinogeikin, S., Rod, E., & Shen, G. ( 2015 ). The laser micro‐machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team. Review of Scientific Instruments, 86 ( 7 ), 072202. https://doi.org/10.1063/1.4926889
dc.identifier.citedreferenceIshimatsu, N., Maruyama, H., Kawamura, N., Suzuki, M., Ohishi, Y., Ito, M., Nasu, S., Kawakami, T., & Shimomura, O. ( 2003 ). Pressure‐induced magnetic transition in Fe 4 N probed by Fe K ‐edge XMCD measurement. Journal of the Physical Society of Japan, 72 ( 9 ), 2372 – 2376. https://doi.org/10.1143/JPSJ.72.2372
dc.identifier.citedreferenceJeanloz, R. ( 1981 ). Finite‐strain equation of state for high‐pressure phases. Geophysical Research Letters, 8 ( 12 ), 1219 – 1222. https://doi.org/10.1029/GL008i012p01219
dc.identifier.citedreferenceKamada, S., Ohtani, E., Terasaki, H., Sakai, T., Takahashi, S., Hirao, N., & Ohishi, Y. ( 2014 ). Equation of state of Fe 3 S at room temperature up to 2 megabars. Physics of the Earth and Planetary Interiors, 228, 106 – 113. https://doi.org/10.1016/j.pepi.2013.11.001
dc.identifier.citedreferenceKaminsky, F., & Wirth, R. ( 2017 ). Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen. American Mineralogist, 102 ( 8 ), 1667 – 1676. https://doi.org/10.2138/am‐2017‐6101
dc.identifier.citedreferenceKlotz, S., Chervin, J. C., Munsch, P., & Le Marchand, G. ( 2009 ). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42 ( 7 ), 075413. https://doi.org/10.1088/0022‐3727/42/7/075413
dc.identifier.citedreferenceKusakabe, M., Hirose, K., Sinmyo, R., Kuwayama, Y., Ohishi, Y., & Helffrich, G. ( 2019 ). Melting curve and equation of state of β‐Fe 7 N 3: Nitrogen in the core? Journal of Geophysical Research: Solid Earth, 124, 3448 – 3457. https://doi.org/10.1029/2018JB015823
dc.identifier.citedreferenceLai, X., Zhu, F., Liu, Y., Bi, W., Zhao, J., Alp, E. E., Hu, M. Y., Zhang, D., Tkachev, S., Manghnani, M. H., Prakapenka, V. B., & Chen, B. ( 2020 ). Elastic and magnetic properties of Fe 3 P up to core pressures: Phosphorus in the Earth’s core. Earth and Planetary Science Letters, 531, 115974. https://doi.org/10.1016/j.epsl.2019.115974
dc.identifier.citedreferenceLe Bail, A. ( 2012 ). Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffraction, 20 ( 4 ), 316 – 326. https://doi.org/10.1154/1.2135315
dc.identifier.citedreferenceLeineweber, A., Jacobs, H., Hüning, F., Lueken, H., & Kockelmann, W. ( 2001 ). Nitrogen ordering and ferromagnetic properties of ϵ‐Fe 3 N 1 + x (0.10 ≤ x ≤ 0.39) and ϵ‐Fe 3 (N 0. 80 C 0. 20 ) 1.38. Journal of Alloys and Compounds, 316 ( 1–2 ), 21 – 38. https://doi.org/10.1016/S0925‐8388(00)01435‐3
dc.identifier.citedreferenceLi, J., & Fei, Y. ( 2014 ). Experimental constraints on core composition. In H. D. Holland, & K. K. Turekian (Eds.), Treatise on Geochemistry (pp. 527 – 557 ). Oxford: Elsevier.
dc.identifier.citedreferenceLi, J., Mao, H. K., Fei, Y., Gregoryanz, E., Eremets, M., & Zha, C. S. ( 2002 ). Compression of Fe 3 C to 30 GPa at room temperature. Physics and Chemistry of Minerals, 29 ( 3 ), 166 – 169. https://doi.org/10.1007/s00269‐001‐0224‐4
dc.identifier.citedreferenceLin, J.‐F., Fei, Y., Sturhahn, W., Zhao, J., Mao, H.‐k., & Hemley, R. J. ( 2004 ). Magnetic transition and sound velocities of Fe 3 S at high pressure: Implications for Earth and planetary cores. Earth and Planetary Science Letters, 226 ( 1–2 ), 33 – 40. https://doi.org/10.1016/j.epsl.2004.07.018
dc.identifier.citedreferenceLin, J. F., Speziale, S., Mao, Z., & Marquardt, H. ( 2013 ). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Reviews of Geophysics, 51, 244 – 275. https://doi.org/10.1002/rog.20010
dc.identifier.citedreferenceLin, J. F., Struzhkin, V. V., Mao, H. K., Hemley, R. J., Chow, P., Hu, M. Y., & Li, J. ( 2004 ). Magnetic transition in compressed Fe 3 C from X‐ray emission spectroscopy. Physical Review B, 70 ( 21 ). https://doi.org/10.1103/PhysRevB.70.212405
dc.identifier.citedreferenceLitasov, K. D., Sharygin, I. S., Dorogokupets, P. I., Shatskiy, A., Gavryushkin, P. N., Sokolova, T. S., Ohtani, E., Li, J., & Funakoshi, K. ( 2013 ). Thermal equation of state and thermodynamic properties of iron carbide Fe 3 C to 31 GPa and 1473 K. Journal of Geophysical Research: Solid Earth, 118, 5274 – 5284. https://doi.org/10.1002/2013JB010270
dc.identifier.citedreferenceLitasov, K. D., Shatskiy, A., Ponomarev, D. S., & Gavryushkin, P. N. ( 2017 ). Equations of state of iron nitrides ε‐Fe 3 N x and γ‐Fe 4 N y to 30 GPa and 1200 K and implication for nitrogen in the Earth’s core. Journal of Geophysical Research: Solid Earth, 122, 3574 – 3584. https://doi.org/10.1002/2017JB014059
dc.identifier.citedreferenceLiu, J., Dauphas, N., Roskosz, M., Hu, M. Y., Yang, H., Bi, W., Zhao, J., Alp, E. E., Hu, J. Y., & Lin, J. F. ( 2017 ). Iron isotopic fractionation between silicate mantle and metallic core at high pressure. Nature Communications, 8 ( 1 ), 14377. https://doi.org/10.1038/ncomms14377
dc.identifier.citedreferenceLiu, J., Dorfman, S. M., Lv, M., Li, J., Zhu, F., & Kono, Y. ( 2019 ). Loss of immiscible nitrogen from metallic melt explains Earth’s missing nitrogen. Geochemical Perspectives Letters, 18 – 22. https://doi.org/10.7185/geochemlet.1919
dc.identifier.citedreferenceLiu, J. C., Li, J., & Ikuta, D. ( 2016 ). Elastic softening in Fe 7 C 3 with implications for Earth’s deep carbon reservoirs. Journal of Geophysical Research: Solid Earth, 121, 1514 – 1524. https://doi.org/10.1002/2015JB012701
dc.identifier.citedreferenceLord, O. T., Walter, M. J., Dasgupta, R., Walker, D., & Clark, S. M. ( 2009 ). Melting in the Fe–C system to 70 GPa. Earth and Planetary Science Letters, 284 ( 1–2 ), 157 – 167. https://doi.org/10.1016/j.epsl.2009.04.017
dc.identifier.citedreferenceMao, H. K., Xu, J., & Bell, P. M. ( 1986 ). Calibration of the ruby pressure gauge to 800 Kbar under quasi‐hydrostatic conditions. Journal of Geophysical Research, 91 ( B5 ), 4673 – 4676. https://doi.org/10.1029/JB091iB05p04673
dc.identifier.citedreferenceMao, Z., Lin, J. F., Liu, J., & Prakapenka, V. B. ( 2011 ). Thermal equation of state of lower‐mantle ferropericlase across the spin crossover. Geophysical Research Letters, 38, L23308. https://doi.org/10.1029/2011GL049915
dc.identifier.citedreferenceMao, Z., Lin, J. F., Yang, J., Wu, J. J., Watson, H. C., Xiao, Y. M., Chow, P., & Zhao, J. ( 2014 ). Spin and valence states of iron in Al‐bearing silicate glass at high pressures studied by synchrotron Mossbauer and X‐ray emission spectroscopy. American Mineralogist, 99 ( 2–3 ), 415 – 423. https://doi.org/10.2138/am.2014.4490
dc.identifier.citedreferenceMargot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A., & Holin, I. V. ( 2007 ). Large longitude libration of Mercury reveals a molten core. Science, 316 ( 5825 ), 710 – 714. https://doi.org/10.1126/science.1140514
dc.identifier.citedreferenceMcdonough, W. F., & Sun, S. S. ( 1995 ). The composition of the Earth. Chemical Geology, 120 ( 3–4 ), 223 – 253. https://doi.org/10.1016/0009‐2541(94)00140‐4
dc.identifier.citedreferenceMinobe, S., Nakajima, Y., Hirose, K., & Ohishi, Y. ( 2015 ). Stability and compressibility of a new iron‐nitride β‐Fe 7 N 3 to core pressures. Geophysical Research Letters, 42, 5206 – 5211. https://doi.org/10.1002/2015GL064496
dc.identifier.citedreferenceMookherjee, M., Nakajima, Y., Steinle‐Neumann, G., Glazyrin, K., Wu, X. A., Dubrovinsky, L., McCammon, C., & Chumakov, A. ( 2011 ). High‐pressure behavior of iron carbide (Fe 7 C 3 ) at inner core conditions. Journal of Geophysical Research, 116, B04201. https://doi.org/10.1029/2010JB007819
dc.identifier.citedreferenceNiewa, R., Rau, D., Wosylus, A., Meier, K., Hanfland, M., Wessel, M., Dronskowski, R., Dzivenko, D. A., Riedel, R., & Schwarz, U. ( 2009 ). High‐pressure, high‐temperature single‐crystal growth, ab initio electronic structure calculations, and equation of state of ε‐Fe 3 N 1+x. Chemistry of Materials, 21 ( 2 ), 392 – 398. https://doi.org/10.1021/cm802721k
dc.identifier.citedreferenceNiewa, R., Rau, D., Wosylus, A., Meier, K., Wessel, M., Hanfland, M., Dronskowski, R., & Schwarz, U. ( 2009 ). High‐pressure high‐temperature phase transition of γ′‐Fe 4 N. Journal of Alloys and Compounds, 480 ( 1 ), 76 – 80. https://doi.org/10.1016/j.jallcom.2008.09.178
dc.identifier.citedreferenceOno, S., & Mibe, K. ( 2010 ). Magnetic transition of iron carbide at high pressures. Physics of the Earth and Planetary Interiors, 180 ( 1–2 ), 1 – 6. https://doi.org/10.1016/j.pepi.2010.03.008
dc.identifier.citedreferencePoirier, J.‐P. ( 1994 ). Light elements in the Earth’s outer core: A critical review. Physics of the Earth and Planetary Interiors, 85 ( 3–4 ), 319 – 337. https://doi.org/10.1016/0031‐9201(94)90120‐1
dc.identifier.citedreferencePopov, Z. I., Litasov, K. D., Gavryushkin, P. N., Ovchinnikov, S. G., & Fedorov, A. S. ( 2015 ). Theoretical study of γ′‐Fe 4 N and ɛ‐Fe x N iron nitrides at pressures up to 500 GPa. JETP Letters, 101 ( 6 ), 371 – 375. https://doi.org/10.1134/s0021364015060090
dc.identifier.citedreferencePrescher, C., Dubrovinsky, L., McCammon, C., Glazyrin, K., Nakajima, Y., Kantor, A., Merlini, M., & Hanfland, M. ( 2012 ). Structurally hidden magnetic transitions in Fe 3 C at high pressures. Physical Review B, 85 ( 14 ), 140402. https://doi.org/10.1103/PhysRevB.85.140402
dc.identifier.citedreferencePrescher, C., & Prakapenka, V. B. ( 2015 ). DIOPTAS: A program for reduction of two‐dimensional X‐ray diffraction data and data exploration. High Pressure Research, 35 ( 3 ), 223 – 230. https://doi.org/10.1080/08957959.2015.1059835
dc.identifier.citedreferenceRivers, M., Prakapenka, V. B., Kubo, A., Pullins, C., Holl, C. M., & Jacobsen, S. D. ( 2008 ). The COMPRES/GSECARS gas‐loading system for diamond anvil cells at the Advanced Photon Source. High Pressure Research, 28 ( 3 ), 273 – 292. https://doi.org/10.1080/08957950802333593
dc.identifier.citedreferenceRobbins, M., & White, J. G. ( 1964 ). Magnetic properties of epsilon‐iron nitride. Journal of Physics and Chemistry of Solids, 25 ( 7 ), 717. https://doi.org/10.1016/0022‐3697(64)90182‐9
dc.identifier.citedreferenceRubin, A. E., & Ma, C. ( 2017 ). Meteoritic minerals and their origins. Geochemistry, 77 ( 3 ), 325 – 385. https://doi.org/10.1016/j.chemer.2017.01.005
dc.identifier.citedreferenceSagatov, N. E., Gavryushkin, P. N., Banayev, M. V., Inerbaev, T. M., & Litasov, K. D. ( 2020 ). Phase relations in the Fe‐P system at high pressures and temperatures from ab initio computations. High Pressure Research, 40 ( 2 ), 235 – 244. https://doi.org/10.1080/08957959.2020.1740699
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.