Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
dc.contributor.author | More than 100 authors | en_US |
dc.date.accessioned | 2020-12-02T14:38:25Z | |
dc.date.available | 2020-12-02T14:38:25Z | |
dc.date.issued | 2018-12 | |
dc.identifier.citation | Théry, Clotilde ; Witwer, Kenneth W; Aikawa, Elena; Alcaraz, Maria Jose; Anderson, Johnathon D; Andriantsitohaina, Ramaroson; Antoniou, Anna; Arab, Tanina; Archer, Fabienne; Atkin‐smith, Georgia K ; Ayre, D Craig; Bach, Jean‐marie ; Bachurski, Daniel; Baharvand, Hossein; Balaj, Leonora; Baldacchino, Shawn; Bauer, Natalie N; Baxter, Amy A; Bebawy, Mary; Beckham, Carla; Bedina Zavec, Apolonija; Benmoussa, Abderrahim; Berardi, Anna C; Bergese, Paolo; Bielska, Ewa; Blenkiron, Cherie; Bobis‐wozowicz, Sylwia ; Boilard, Eric; Boireau, Wilfrid; Bongiovanni, Antonella; Borràs, Francesc E ; Bosch, Steffi; Boulanger, Chantal M; Breakefield, Xandra; Breglio, Andrew M; Brennan, Meadhbh Á ; Brigstock, David R; Brisson, Alain; Broekman, Marike LD; Bromberg, Jacqueline F; Bryl‐górecka, Paulina ; Buch, Shilpa; Buck, Amy H; Burger, Dylan; Busatto, Sara; Buschmann, Dominik; Bussolati, Benedetta; Buzás, Edit I ; Byrd, James Bryan; Camussi, Giovanni; Carter, David RF; Caruso, Sarah; Chamley, Lawrence W; Chang, Yu‐ting ; Chen, Chihchen; Chen, Shuai; Cheng, Lesley; Chin, Andrew R; Clayton, Aled; Clerici, Stefano P; Cocks, Alex; Cocucci, Emanuele; Coffey, Robert J; Cordeiro‐da‐silva, Anabela ; Couch, Yvonne; Coumans, Frank AW; Coyle, Beth; Crescitelli, Rossella; Criado, Miria Ferreira; D’Souza‐schorey, Crislyn ; Das, Saumya; Datta Chaudhuri, Amrita; Candia, Paola; De Santana, Eliezer F; De Wever, Olivier; Portillo, Hernando A; Demaret, Tanguy; Deville, Sarah; Devitt, Andrew; Dhondt, Bert; Di Vizio, Dolores; Dieterich, Lothar C; Dolo, Vincenza; Dominguez Rubio, Ana Paula; Dominici, Massimo; Dourado, Mauricio R; Driedonks, Tom AP; Duarte, Filipe V; Duncan, Heather M; Eichenberger, Ramon M; Ekström, Karin ; El Andaloussi, Samir ; Elie‐caille, Celine ; Erdbrügger, Uta ; Falcón‐pérez, Juan M ; Fatima, Farah; Fish, Jason E; Flores‐bellver, Miguel ; Försönits, András ; Frelet‐barrand, Annie ; Fricke, Fabia; Fuhrmann, Gregor; Gabrielsson, Susanne; Gámez‐valero, Ana ; Gardiner, Chris; Gärtner, Kathrin ; Gaudin, Raphael; Gho, Yong Song; Giebel, Bernd; Gilbert, Caroline; Gimona, Mario; Giusti, Ilaria; Goberdhan, Deborah CI; Görgens, André ; Gorski, Sharon M; Greening, David W; Gross, Julia Christina; Gualerzi, Alice; Gupta, Gopal N; Gustafson, Dakota; Handberg, Aase; Haraszti, Reka A; Harrison, Paul; Hegyesi, Hargita; Hendrix, An; Hill, Andrew F; Hochberg, Fred H; Hoffmann, Karl F; Holder, Beth; Holthofer, Harry; Hosseinkhani, Baharak; Hu, Guoku; Huang, Yiyao; Huber, Veronica; Hunt, Stuart; Ibrahim, Ahmed Gamal‐eldin ; Ikezu, Tsuneya; Inal, Jameel M; Isin, Mustafa; Ivanova, Alena; Jackson, Hannah K; Jacobsen, Soren; Jay, Steven M; Jayachandran, Muthuvel; Jenster, Guido; Jiang, Lanzhou; Johnson, Suzanne M; Jones, Jennifer C; Jong, Ambrose; Jovanovic‐talisman, Tijana ; Jung, Stephanie; Kalluri, Raghu; Kano, Shin‐ichi ; Kaur, Sukhbir; Kawamura, Yumi; Keller, Evan T; Khamari, Delaram; Khomyakova, Elena; Khvorova, Anastasia; Kierulf, Peter; Kim, Kwang Pyo; Kislinger, Thomas; Klingeborn, Mikael; Klinke, David J; Kornek, Miroslaw; Kosanović, Maja M ; Kovács, Árpád Ferenc ; Krämer‐albers, Eva‐maria ; Krasemann, Susanne; Krause, Mirja; Kurochkin, Igor V; Kusuma, Gina D; Kuypers, Sören ; Laitinen, Saara; Langevin, Scott M; Languino, Lucia R; Lannigan, Joanne; Lässer, Cecilia ; Laurent, Louise C; Lavieu, Gregory; Lázaro‐ibáñez, Elisa ; Le Lay, Soazig; Lee, Myung‐shin ; Lee, Yi Xin Fiona; Lemos, Debora S; Lenassi, Metka; Leszczynska, Aleksandra; Li, Isaac TS; Liao, Ke; Libregts, Sten F; Ligeti, Erzsebet; Lim, Rebecca; Lim, Sai Kiang; Linē, Aija ; Linnemannstöns, Karen ; Llorente, Alicia; Lombard, Catherine A; Lorenowicz, Magdalena J; Lörincz, Ákos M ; Lötvall, Jan ; Lovett, Jason; Lowry, Michelle C; Loyer, Xavier; Lu, Quan; Lukomska, Barbara; Lunavat, Taral R; Maas, Sybren LN; Malhi, Harmeet; Marcilla, Antonio; Mariani, Jacopo; Mariscal, Javier; Martens‐uzunova, Elena S ; Martin‐jaular, Lorena ; Martinez, M Carmen; Martins, Vilma Regina; Mathieu, Mathilde; Mathivanan, Suresh; Maugeri, Marco; McGinnis, Lynda K; McVey, Mark J; Meckes, David G; Meehan, Katie L; Mertens, Inge; Minciacchi, Valentina R; Möller, Andreas ; Møller Jørgensen, Malene ; Morales‐kastresana, Aizea ; Morhayim, Jess; Mullier, François ; Muraca, Maurizio; Musante, Luca; Mussack, Veronika; Muth, Dillon C; Myburgh, Kathryn H; Najrana, Tanbir; Nawaz, Muhammad; Nazarenko, Irina; Nejsum, Peter; Neri, Christian; Neri, Tommaso; Nieuwland, Rienk; Nimrichter, Leonardo; Nolan, John P; Nolte‐’T Hoen, Esther Nm ; Noren Hooten, Nicole; O’Driscoll, Lorraine; O’Grady, Tina; O’Loghlen, Ana; Ochiya, Takahiro; Olivier, Martin; Ortiz, Alberto; Ortiz, Luis A; Osteikoetxea, Xabier; Østergaard, Ole ; Ostrowski, Matias; Park, Jaesung; Pegtel, D. Michiel; Peinado, Hector; Perut, Francesca; Pfaffl, Michael W; Phinney, Donald G; Pieters, Bartijn CH; Pink, Ryan C; Pisetsky, David S; Pogge von Strandmann, Elke; Polakovicova, Iva; Poon, Ivan KH; Powell, Bonita H; Prada, Ilaria; Pulliam, Lynn; Quesenberry, Peter; Radeghieri, Annalisa; Raffai, Robert L; Raimondo, Stefania; Rak, Janusz; Ramirez, Marcel I; Raposo, Graça ; Rayyan, Morsi S; Regev‐rudzki, Neta ; Ricklefs, Franz L; Robbins, Paul D; Roberts, David D; Rodrigues, Silvia C; Rohde, Eva; Rome, Sophie; Rouschop, Kasper MA; Rughetti, Aurelia; Russell, Ashley E; Saá, Paula ; Sahoo, Susmita; Salas‐huenuleo, Edison ; Sánchez, Catherine ; Saugstad, Julie A; Saul, Meike J; Schiffelers, Raymond M; Schneider, Raphael; Schøyen, Tine Hiorth ; Scott, Aaron; Shahaj, Eriomina; Sharma, Shivani; Shatnyeva, Olga; Shekari, Faezeh; Shelke, Ganesh Vilas; Shetty, Ashok K; Shiba, Kiyotaka; Siljander, Pia R‐m ; Silva, Andreia M; Skowronek, Agata; Snyder, Orman L; Soares, Rodrigo Pedro; Sódar, Barbara W ; Soekmadji, Carolina; Sotillo, Javier; Stahl, Philip D; Stoorvogel, Willem; Stott, Shannon L; Strasser, Erwin F; Swift, Simon; Tahara, Hidetoshi; Tewari, Muneesh; Timms, Kate; Tiwari, Swasti; Tixeira, Rochelle; Tkach, Mercedes; Toh, Wei Seong; Tomasini, Richard; Torrecilhas, Ana Claudia; Tosar, Juan Pablo; Toxavidis, Vasilis; Urbanelli, Lorena; Vader, Pieter; Balkom, Bas WM; Grein, Susanne G; Van Deun, Jan; Herwijnen, Martijn JC; Van Keuren‐jensen, Kendall ; Niel, Guillaume; Royen, Martin E; Wijnen, Andre J; Vasconcelos, M Helena; Vechetti, Ivan J; Veit, Tiago D; Vella, Laura J; Velot, Émilie ; Verweij, Frederik J; Vestad, Beate; Viñas, Jose L ; Visnovitz, Tamás ; Vukman, Krisztina V; Wahlgren, Jessica; Watson, Dionysios C; Wauben, Marca HM; Weaver, Alissa; Webber, Jason P; Weber, Viktoria; Wehman, Ann M; Weiss, Daniel J; Welsh, Joshua A; Wendt, Sebastian; Wheelock, Asa M; Wiener, Zoltán ; Witte, Leonie; Wolfram, Joy; Xagorari, Angeliki; Xander, Patricia; Xu, Jing; Yan, Xiaomei; Yáñez‐mó, María ; Yin, Hang; Yuana, Yuana; Zappulli, Valentina; Zarubova, Jana; Žėkas, Vytautas ; Zhang, Jian‐ye ; Zhao, Zezhou; Zheng, Lei; Zheutlin, Alexander R; Zickler, Antje M; Zimmermann, Pascale; Zivkovic, Angela M; Zocco, Davide; Zuba‐surma, Ewa K (2018). "Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines." Journal of Extracellular Vesicles 7(1): n/a-n/a. | |
dc.identifier.issn | 2001-3078 | |
dc.identifier.issn | 2001-3078 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/163594 | |
dc.description | For a complete list of authors, please look at article. | en_US |
dc.description.abstract | The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cellâ released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (â MISEVâ ) guidelines for the field in 2014. We now update these â MISEV2014â guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EVâ associated functional activities. Finally, a checklist is provided with summaries of key points. | |
dc.publisher | Taylor & Francis | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | exosomes | |
dc.subject.other | ectosomes | |
dc.subject.other | microvesicles | |
dc.subject.other | minimal information requirements | |
dc.subject.other | rigor | |
dc.subject.other | guidelines | |
dc.subject.other | microparticles | |
dc.subject.other | reproducibility | |
dc.subject.other | standardization | |
dc.subject.other | extracellular vesicles | |
dc.title | Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Medicine (General) | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/163594/1/jev2bf00336.pdf | en_US |
dc.identifier.doi | 10.1080/20013078.2018.1535750 | |
dc.identifier.source | Journal of Extracellular Vesicles | |
dc.identifier.citedreference | Rojas A The imperative authentication of cell lines. Antimicrob Agents Chemother. 2017; 61 ( 11 ): e01823 â 17. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.01823â 17 | |
dc.identifier.citedreference | Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016; 6 ( 1 ): 36162. Available from: http://www.nature.com/articles/srep36162 | |
dc.identifier.citedreference | LŠrincz à M, Timár CI, Marosvári KA, et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles. 2014; 3 ( 1 ): 25465. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.25465 | |
dc.identifier.citedreference | Kriebardis AG, Antonelou MH, Georgatzakou HT, et al. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects. Blood Transfus. 2016; 14 ( 2 ): 228 â 237. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27136430 | |
dc.identifier.citedreference | Vilaâ Liante V, Sánchezâ López V, MartÃnezâ Sales V, et al. Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters. Clin Chem Lab Med. 2016; 54 ( 11 ): 1759 â 1767. Available from: https://www.degruyter.com/view/j/cclm.2016.54.issueâ 11/cclmâ 2016â 0036/cclmâ 2016â 0036.xml | |
dc.identifier.citedreference | Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006; 69 ( 8 ): 1471 â 1476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16501490 | |
dc.identifier.citedreference | Michaelis ML, Jiang L, Michaelis EK Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes. In: Methods in molecular biology. Clifton, NJ. 2017. p. 107 â 119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27943187 | |
dc.identifier.citedreference | Leroyer AS, Ebrahimian TG, Cochain C, et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation. 2009; 119 ( 21 ): 2808 â 2817. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.108.816710 | |
dc.identifier.citedreference | Loyer X, Zlatanova I, Devue C, et al. Intraâ cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018; 123 ( 1 ): 100 â 106. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.311326 | |
dc.identifier.citedreference | Kranendonk MEG, Visseren FLJ, van Balkom BWM, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 2014; 22 ( 5 ): 1296 â 1308. | |
dc.identifier.citedreference | Wang GJ, Liu Y, Qin A, et al. Thymus exosomesâ like particles induce regulatory T cells. J Immunol. 2008; 181 ( 8 ): 5242 â 5248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18832678 | |
dc.identifier.citedreference | Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosomeâ like vesicles mediate activation of macrophageâ induced insulin resistance. Diabetes. 2009; 58 ( 11 ): 2498 â 2505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19675137 | |
dc.identifier.citedreference | Vella LJ, Scicluna BJ, Cheng L, et al. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017; 6 ( 1 ): 1348885. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28804598 | |
dc.identifier.citedreference | Perezâ Gonzalez R, Gauthier SA, Kumar A, et al. The exosome secretory pathway transports amyloid precursor protein carboxylâ terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012; 287 ( 51 ): 43108 â 43115. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M112.404467 | |
dc.identifier.citedreference | Holder BS, Tower CL, Forbes K, et al. Immune cell activation by trophoblastâ derived microvesicles is mediated by syncytin 1. Immunology. 2012; 136 ( 2 ): 184 â 191. | |
dc.identifier.citedreference | Gupta AK, Rusterholz C, Huppertz B, et al. A comparative study of the effect of three different syncytiotrophoblast microâ particles preparations on endothelial cells. Placenta. 2005; 26 ( 1 ): 59 â 66. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0143400404001080 | |
dc.identifier.citedreference | Lunavat TR, Cheng L, Einarsdottir BO, et al. BRAFV600Â inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A. 2017; 114 ( 29 ): E5930 â 9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1705206114 | |
dc.identifier.citedreference | Minchevaâ Nilsson L, Baranov V, Nagaeva O, et al. Isolation and characterization of exosomes from cultures of tissue explants and cell lines. Curr Protoc Immunol. 2016; 115: 14.42.1 â 14.42.21. | |
dc.identifier.citedreference | Heijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alphaâ granules. Blood. 1999; 94 ( 11 ): 3791 â 3799. | |
dc.identifier.citedreference | Ayers L, Kohler M, Harrison P, et al. Measurement of circulating cellâ derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011; 127 ( 4 ): 370 â 377. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21257195 | |
dc.identifier.citedreference | Muller L, Hong Câ S, Stolz DB, et al. Isolation of biologicallyâ active exosomes from human plasma. J Immunol Meth. 2014; 411: 55 â 65. | |
dc.identifier.citedreference | Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013; 8 ( 6 ): e64795. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23762257 | |
dc.identifier.citedreference | Mitchell AJ, Gray WD, Hayek SS, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep. 2016; 6 ( 1 ): 32651. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27623086 | |
dc.identifier.citedreference | György B, Pálóczi K, Kovács A, et al. Improved circulating microparticle analysis in acidâ citrate dextrose (ACD) anticoagulant tube. Thromb Res. 2014; 133 ( 2 ): 285 â 292. Available from: http://linkinghub.elsevier.com/retrieve/pii/S004938481300546X | |
dc.identifier.citedreference | Wisgrill L, Lamm C, Hartmann J, et al. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A. 2016; 89 ( 7 ): 663 â 672. | |
dc.identifier.citedreference | Fendl B, Weiss R, Fischer MB, et al. Characterization of extracellular vesicles in whole blood: influence of preâ analytical parameters and visualization of vesicleâ cell interactions using imaging flow cytometry. Biochem Biophys Res Commun. 2016; 478 ( 1 ): 168 â 173. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X16311950 | |
dc.identifier.citedreference | Danielson KM, Estanislau J, Tigges J, et al. Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One. 2016; 11 ( 1 ): e0144678. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26745887 | |
dc.identifier.citedreference | Robbins PD Extracellular vesicles and aging. Stem Cell Investig. 2017; 4 ( 12 ): 98. Available from: http://sci.amegroups.com/article/view/17758/18069 | |
dc.identifier.citedreference | Yuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015; 4: 29260. | |
dc.identifier.citedreference | Yuana Y, Bertina RM, Osanto S Preâ analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011; 105 ( 3 ): 396 â 408. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21174005 | |
dc.identifier.citedreference | Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017; 120 ( 10 ): 1632 â 1648. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.309417 | |
dc.identifier.citedreference | Lacroix R, Judicone C, Poncelet P, et al. Impact of preâ analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012; 10 ( 3 ): 437 â 446. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22212198 | |
dc.identifier.citedreference | Mullier F, Bailly N, Chatelain C, et al. Preâ analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23410207 | |
dc.identifier.citedreference | Barteneva NS, Faslerâ Kan E, Bernimoulin M, et al. Circulating microparticles: square the circle. BMC Cell Biol. 2013; 14 ( 1 ): 23. Available from: http://bmccellbiol.biomedcentral.com/articles/10.1186/1471â 2121â 14â 23 | |
dc.identifier.citedreference | Bæk R, Søndergaard EKL, Varming K, et al. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Meth. 2016; 438: 11 â 20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175916301624 | |
dc.identifier.citedreference | Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzà s EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNAâ An ISEV Position Paper. J Extracell Vesicles. 2017; 6: 1286095. | |
dc.identifier.citedreference | Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research: an ISEV position paper. J Extracell Vesicles. 2013; 2: 20360. | |
dc.identifier.citedreference | Kaur S, Singh SP, Elkahloun AG, et al. CD47â dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014; 37: 49 â 59. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X14000924 | |
dc.identifier.citedreference | Shelke GV, Lässer C, Gho YS, et al. Importance of exosome depletion protocols to eliminate functional and RNAâ containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014; 3: 24783. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317276 | |
dc.identifier.citedreference | Wei Z, Batagov AO, Carter DRF, et al. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Sci Rep. 2016; 6: 31175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27503761 | |
dc.identifier.citedreference | Kornilov R, Puhka M, Mannerström B, et al. Efficient ultrafiltrationâ based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2018; 7 ( 1 ): 1422674. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1422674 | |
dc.identifier.citedreference | van Balkom BWM, de Jong OG, Smits M, et al. Endothelial cells require miRâ 214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013; 121 ( 19 ): 3997 â 4006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23532734 | |
dc.identifier.citedreference | Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Current protocols in cell biology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006. p. Unit 3.22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18228490 | |
dc.identifier.citedreference | Eitan E, Zhang S, Witwer KW, et al. Extracellular vesicleâ depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles. 2015; 4: 26373. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25819213 | |
dc.identifier.citedreference | Beninson LA, Fleshner M Exosomes in fetal bovine serum dampen primary macrophage ILâ 1β response to lipopolysaccharide (LPS) challenge. Immunol Lett. 2015; 163 ( 2 ): 187 â 192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25455591 | |
dc.identifier.citedreference | Li J, Lee Y, Johansson HJ, et al. Serumâ free culture alters the quantity and protein composition of neuroblastomaâ derived extracellular vesicles. J Extracell Vesicles. 2015; 4 ( 1 ): 26883. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26883 | |
dc.identifier.citedreference | Saury C, Lardenois A, Schleder C, et al. Human serum and platelet lysate are appropriate xenoâ free alternatives for clinicalâ grade production of human MuStem cell batches. Stem Cell Res Ther. 2018; 9 ( 1 ): 128. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287â 018â 0852â y | |
dc.identifier.citedreference | Pachler K, Lener T, Streif D, et al. A good manufacturing practiceâ grade standard protocol for exclusively human mesenchymal stromal cellâ derived extracellular vesicles. Cytotherapy. 2017; 19 ( 4 ): 458 â 472. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1465324917300038 | |
dc.identifier.citedreference | Zhou X, Zhang W, Yao Q, et al. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol. 2017; 312 ( 6 ): F963 â 70. Available from: http://www.physiology.org/doi/10.1152/ajprenal.00078.2017 | |
dc.identifier.citedreference | Németh A, Orgovan N, Sódar BW, et al. Antibioticâ induced release of small extracellular vesicles (exosomes) with surfaceâ associated DNA. Sci Rep. 2017; 7 ( 1 ): 8202. Available from: http://www.nature.com/articles/s41598â 017â 08392â 1 | |
dc.identifier.citedreference | Rice GE, Scholzâ Romero K, Sweeney E, et al. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab. 2015; 100 ( 10 ): E1280 â 8. Available from: https://academic.oup.com/jcem/articleâ lookup/doi/10.1210/jc.2015â 2270 | |
dc.identifier.citedreference | Thom SR, Bhopale VM, Yu K, et al. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. J Biol Chem. 2017; 292 ( 44 ): 18312 â 18324. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M117.802629 | |
dc.identifier.citedreference | Burger D, Turner M, Xiao F, et al. High glucose increases the formation and proâ oxidative activity of endothelial microparticles. Diabetologia. 2017; 60 ( 9 ): 1791 â 1800. Available from: http://link.springer.com/10.1007/s00125â 017â 4331â 2 | |
dc.identifier.citedreference | Mathivanan S, Lim JW, Tauro BJ, et al. Proteomics analysis of A33 immunoaffinityâ purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissueâ specific protein signature. Mol Cell Proteomics. 2010; 9 ( 2 ): 197 â 208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19837982 | |
dc.identifier.citedreference | Quah BJC, O’Neill HC Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J Leukoc Biol. 2007; 82 ( 5 ): 1070 â 1082. | |
dc.identifier.citedreference | Yang C, Chalasani G, Ng Yâ H, et al. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One. 2012; 7 ( 4 ): e36138. Available from: http://dx.plos.org/10.1371/journal.pone.0036138 | |
dc.identifier.citedreference | Corralâ Vázquez C, Aguilarâ quesada R, Catalina P, et al. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 2017; 18 ( 2 ): 271 â 280. Available from: http://link.springer.com/10.1007/s10561â 017â 9617â 6 | |
dc.identifier.citedreference | Chernov VM, Mouzykantov AA, Baranova NB, et al. Extracellular membrane vesicles secreted by mycoplasma acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics. 2014; 110: 117 â 128. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1874391914003819 | |
dc.identifier.citedreference | Lázaroâ Ibáñez E, Neuvonen M, Takatalo M, et al. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cellâ derived extracellular vesicles. J Extracell Vesicles. 2017; 6 ( 1 ): 1354645. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1354645 | |
dc.identifier.citedreference | Tosar JP, Cayota A, Eitan E, et al. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J Extracell Vesicles. 2017; 6 ( 1 ): 1272832. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28326168 | |
dc.identifier.citedreference | Saari H, Lázaroâ Ibáñez E, Viitala T, et al. Microvesicleâ and exosomeâ mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release. 2015; 220 ( PtB ): 727 â 737. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365915301322 | |
dc.identifier.citedreference | Soekmadji C, Riches JD, Russell PJ, et al. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget. 2017; 8 ( 32 ): 52237 â 52255. Available from: http://www.oncotarget.com/fulltext/11111 | |
dc.identifier.citedreference | Agouni A, Mostefai HA, Porro C, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J. 2007; 21 ( 11 ): 2735 â 2741. Available from: http://www.fasebj.org/doi/10.1096/fj.07â 8079com | |
dc.identifier.citedreference | Mostefai HA, Agouni A, Carusio N, et al. Phosphatidylinositol 3â kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol. 2008; 180 ( 7 ): 5028 â 5035. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18354228 | |
dc.identifier.citedreference | Taylor J, Jaiswal R, Bebawy M Calciumâ calpain dependent pathways regulate vesiculation in malignant breast cells. Curr Cancer Drug Targets. 2017; 17 ( 5 ): 486 â 494. Available from: http://www.eurekaselect.com/node/146745/article | |
dc.identifier.citedreference | Dozio V, Sanchez Jâ C Characterisation of extracellular vesicleâ subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles. 2017; 6 ( 1 ): 1302705. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1302705 | |
dc.identifier.citedreference | Stratton D, Moore C, Antwiâ Baffour S, et al. Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5bâ 9. Biochem Biophys Res Commun. 2015; 460 ( 3 ): 589 â 595. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X15005203 | |
dc.identifier.citedreference | de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cellâ derived exosomes. J Extracell Vesicles. 2012; 1 ( 1 ): 18396. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.18396 | |
dc.identifier.citedreference | Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015; 213 ( 4Suppl ): S173 â 81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002937815007176 | |
dc.identifier.citedreference | Lowry MC, O’Driscoll L Can hiâ jacking hypoxia inhibit extracellular vesicles in cancer? Drug Discov Today. 2018; 23 ( 6 ): 1267 â 1273. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644617303252 | |
dc.identifier.citedreference | Watson DC, Yung BC, Bergamaschi C, et al. Scalable, cGMPâ compatible purification of extracellular vesicles carrying bioactive human heterodimeric ILâ 15/lactadherin complexes. J Extracell Vesicles. 2018; 7 ( 1 ): 1442088. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29535850 | |
dc.identifier.citedreference | Yan IK, Shukla N, Borrelli DA, et al. Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol. 2018; 1740: 35 â 41. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7652â 2_4 | |
dc.identifier.citedreference | Tauro BJ, Greening DW, Mathias RA, et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cellâ derived organoids. Mol Cell Proteomics. 2013; 12 ( 3 ): 587 â 598. Available from: http://www.mcponline.org/lookup/doi/10.1074/mcp.M112.021303 | |
dc.identifier.citedreference | van Niel G, Raposo G, Candalh C, et al. Intestinal epithelial cells secrete exosomeâ like vesicles. Gastroenterology. 2001; 121 ( 2 ): 337 â 349. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11487543 | |
dc.identifier.citedreference | Mittelbrunn M, Vicenteâ Manzanares M, Sánchezâ Madrid F Organizing polarized delivery of exosomes at synapses. Traffic. 2015; 16 ( 4 ): 327 â 337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25614958 | |
dc.identifier.citedreference | Klingeborn M, Dismuke WM, Skiba NP, et al. Directional exosome proteomes reflect polarityâ specific functions in retinal pigmented epithelium monolayers. Sci Rep. 2017; 7 ( 1 ): 4901. Available from: http://www.nature.com/articles/s41598â 017â 05102â 9 | |
dc.identifier.citedreference | Dang VD, Jella KK, Ragheb RRT, et al. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J. 2017; 31 ( 12 ): 5399 â 5408. Available from: http://www.fasebj.org/doi/10.1096/fj.201700417R | |
dc.identifier.citedreference | Patel DB, Gray KM, Santharam Y, et al. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cellâ derived extracellular vesicles. Bioeng Transl Med. 2017; 2 ( 2 ): 170 â 179. | |
dc.identifier.citedreference | Takasugi M Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 2018; 17 ( 2 ): e12734. | |
dc.identifier.citedreference | Roseblade A, Luk F, Ung A, et al. Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance. Curr Cancer Drug Targets. 2015; 15 ( 3 ): 205 â 214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25714701 | |
dc.identifier.citedreference | Frey B, Gaipl US The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol. 2011; 33 ( 5 ): 497 â 516. Available from: http://link.springer.com/10.1007/s00281â 010â 0228â 6 | |
dc.identifier.citedreference | Lima LG, Chammas R, Monteiro RQ, et al. Tumorâ derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserineâ dependent manner. Cancer Lett. 2009; 283 ( 2 ): 168 â 175. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304383509002420 | |
dc.identifier.citedreference | Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESCâ derived MSCs. J Transl Med. 2011; 9 ( 1 ): 47. Available from: http://translationalâ medicine.biomedcentral.com/articles/10.1186/1479â 5876â 9â 47 | |
dc.identifier.citedreference | References, especially those provided to illustrate methods and approaches, are representative only, and are not meant to be a comprehensive review of the literature. Most references were derived from suggestions provided in the MISEV2018 Survey results. Each reference was checked by multiple authors. Citation implies deemed relevance of scientific content and not an endorsement by the authors or ISEV of any particular journal or editorial practice. | |
dc.identifier.citedreference | Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014; 3: 26913. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25536934 | |
dc.identifier.citedreference | Witwer KW, Soekmadji C, Hill AF, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017; 6 ( 1 ): 1396823. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1396823 | |
dc.identifier.citedreference | Stein JM, Luzio JP Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasmaâ membrane proteins and lipids into shed vesicles. Biochem J. 1991; 274 (Pt 2): 381 â 43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1848755 | |
dc.identifier.citedreference | Cocucci E, Meldolesi J Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015; 25 ( 6 ): 364 â 372. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25683921 | |
dc.identifier.citedreference | Gould SJ, Raposo G As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013; 2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009890 | |
dc.identifier.citedreference | Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016; 5: 32945. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27802845 | |
dc.identifier.citedreference | Reid Y, Storts D, Riss T, et al. Authentication of human cell lines by STR DNA profiling analysis [Internet]. Assay Guidance Manual. 2004. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805434 | |
dc.identifier.citedreference | Subramanian SL, Kitchen RR, Alexander R, et al. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and linked data technologies. J Extracell Vesicles. 2015; 4: 27497. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26320941 | |
dc.identifier.citedreference | Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009; 9 ( 21 ): 4997 â 5000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19810033 | |
dc.identifier.citedreference | Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012; 10 ( 12 ): e1001450. | |
dc.identifier.citedreference | Kim Dâ K, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015; 31 ( 6 ): 933 â 939. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388151 | |
dc.identifier.citedreference | Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of highâ throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013; 2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009897 | |
dc.identifier.citedreference | Peinado H, AleÄ koviÄ M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a proâ metastatic phenotype through MET. Nat Med. 2012; 18 ( 6 ): 883 â 891. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22635005 | |
dc.identifier.citedreference | Bobrie A, Colombo M, Krumeich S, et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 2012; 1: 18297. | |
dc.identifier.citedreference | Menck K, Sönmezer C, Worst TS, et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles. 2017; 6 ( 1 ): 1378056. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1378056 | |
dc.identifier.citedreference | Hoang TQ, Rampon C, Freyssinet Jâ M, et al. A method to assess the migration properties of cellâ derived microparticles within a living tissue. Biochim Biophys Acta. 2011; 1810 ( 9 ): 863 â 866. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416511001061 | |
dc.identifier.citedreference | Booth AM, Fang Y, Fallon JK, et al. Exosomes and HIV Gag bud from endosomeâ like domains of the T cell plasma membrane. J Cell Biol. 2006; 172 ( 6 ): 923 â 935. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533950 | |
dc.identifier.citedreference | Romancino DP, Paterniti G, Campos Y, et al. Identification and characterization of the nanoâ sized vesicles released by muscle cells. FEBS Lett. 2013; 587 ( 9 ): 1379 â 1384. | |
dc.identifier.citedreference | Colombo M, Raposo G, Théry C Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30 ( 1 ): 255 â 289. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25288114 | |
dc.identifier.citedreference | Schwechheimer C, Kuehn MJ. Outerâ membrane vesicles from Gramâ negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015; 13 ( 10 ): 605 â 619. Available from: http://www.nature.com/articles/nrmicro3525 | |
dc.identifier.citedreference | Di Vizio D, Kim J, Hager MH, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009; 69 ( 13 ): 5601 â 5609. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008â 5472.CANâ 08â 3860 | |
dc.identifier.citedreference | Yu X, Xu J, Liu W, et al. Bubbles induce endothelial microparticle formation via a calciumâ dependent pathway involving flippase inactivation and rho kinase activation. Cell Physiol Biochem. 2018; 46 ( 3 ): 965 â 974. Available from: https://www.karger.com/Article/FullText/488825 | |
dc.identifier.citedreference | Gao C, Li R, Liu Y, et al. Rhoâ kinaseâ dependent Fâ actin rearrangement is involved in the release of endothelial microparticles during IFNâ αâ induced endothelial cell apoptosis. J Trauma Acute Care Surg. 2012; 73 ( 5 ): 1152 â 1160. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01586154â 201211000â 00017 | |
dc.identifier.citedreference | Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol. 2011; 31 ( 8 ): 1898 â 1907. Available from: http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.110.222703 | |
dc.identifier.citedreference | Muralidharanâ Chari V, Clancy J, Plou C, et al. ARF6â regulated shedding of tumor cellâ derived plasma membrane microvesicles. Curr Biol. 2009; 19 ( 22 ): 1875 â 1885. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960982209017722 | |
dc.identifier.citedreference | Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domainâ containing protein 1â mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012; 109 ( 11 ): 4146 â 4151. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1200448109 | |
dc.identifier.citedreference | Wang Q, Lu Q Plasma membraneâ derived extracellular microvesicles mediate nonâ canonical intercellular NOTCH signaling. Nat Commun. 2017; 8 ( 1 ): 709. Available from: http://www.nature.com/articles/s41467â 017â 00767â 2 | |
dc.identifier.citedreference | Edgar JR, Manna PT, Nishimura S, et al. Tetherin is an exosomal tether. Elife. 2016; 5: 17180. Available from: https://elifesciences.org/articles/17180 | |
dc.identifier.citedreference | Minakaki G, Menges S, Kittel A, et al. Autophagy inhibition promotes SNCA/alphaâ synuclein release and transfer via extracellular vesicles with a hybrid autophagosomeâ exosomeâ like phenotype. Autophagy. 2018; 14 ( 1 ): 98 â 119. Available from: https://www.tandfonline.com/doi/full/10.1080/15548627.2017.1395992 | |
dc.identifier.citedreference | Savina A, Furlán M, Vidal M, et al. Exosome release is regulated by a calciumâ dependent mechanism in K562 cells. J Biol Chem. 2003; 278 ( 22 ): 20083 â 20090. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M301642200 | |
dc.identifier.citedreference | Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012; 119 ( 3 ): 756 â 766. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22031862 | |
dc.identifier.citedreference | Chalmin F, Ladoire S, Mignot G, et al. Membraneâ associated Hsp72 from tumorâ derived exosomes mediates STAT3â dependent immunosuppressive function of mouse and human myeloidâ derived suppressor cells. J Clin Invest. 2010; 120 ( 2 ): 457 â 471. Available from: http://www.jci.org/articles/view/40483 | |
dc.identifier.citedreference | Jackson CE, Scruggs BS, Schaffer JE, et al. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J. 2017; 113 ( 6 ): 1342 â 1352. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006349517305714 | |
dc.identifier.citedreference | Sinha S, Hoshino D, Hong NH, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016; 214 ( 2 ): 197 â 213. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201601025 | |
dc.identifier.citedreference | Imjeti NS, Menck K, Egeaâ Jimenez AL, et al. Syntenin mediates SRC function in exosomal cellâ toâ cell communication. Proc Natl Acad Sci U S A. 2017; 114 ( 47 ): 12495 â 12500. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1713433114 | |
dc.identifier.citedreference | Gross JC, Chaudhary V, Bartscherer K, et al. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012; 14 ( 10 ): 1036 â 1045. Available from: http://www.nature.com/articles/ncb2574 | |
dc.identifier.citedreference | Hyenne V, Apaydin A, Rodriguez D, et al. RALâ 1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015; 211 ( 1 ): 27 â 37. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201504136 | |
dc.identifier.citedreference | Hsu C, Morohashi Y, Yoshimura Sâ I, et al. Regulation of exosome secretion by Rab35 and its GTPaseâ activating proteins TBC1D10Aâ C. J Cell Biol. 2010; 189 ( 2 ): 223 â 232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404108 | |
dc.identifier.citedreference | Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010; 12 ( 1 ): 13 â 19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19966785 | |
dc.identifier.citedreference | Savina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci. 2002; 115 ( Pt 12 ): 2505 â 2515. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12045221 | |
dc.identifier.citedreference | Villarroyaâ Beltri C, Baixauli F, Mittelbrunn M, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016; 7: 13588. Available from: http://www.nature.com/doifinder/10.1038/ncomms13588 | |
dc.identifier.citedreference | Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrowâ derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extractâ induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015; 4 ( 11 ): 1302 â 1316. | |
dc.identifier.citedreference | Dinkins MB, Enasko J, Hernandez C, et al. Neutral sphingomyelinaseâ 2 deficiency ameliorates alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J Neurosci. 2016; 36 ( 33 ): 8653 â 8667. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1429â 16.2016 | |
dc.identifier.citedreference | Figueraâ Losada M, Stathis M, Dorskind JM, et al. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One. 2015; 10 ( 5 ): e0124481. Available from: http://dx.plos.org/10.1371/journal.pone.0124481 | |
dc.identifier.citedreference | Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008; 319 ( 5867 ): 1244 â 1247. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124 | |
dc.identifier.citedreference | Benedikter BJ, Bouwman FG, Vajen T, et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep. 2017; 7 ( 1 ): 15297. Available from: http://www.nature.com/articles/s41598â 017â 15717â 7 | |
dc.identifier.citedreference | Gyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cellâ derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011; 117 ( 4 ): e39 â 48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21041717 | |
dc.identifier.citedreference | Paolini L, Zendrini A, Di Noto G, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016; 6 ( 1 ): 23550. Available from: http://www.nature.com/articles/srep23550 | |
dc.identifier.citedreference | Gámezâ Valero A, Monguióâ Tortajada M, Carrerasâ Planella L, et al. Sizeâ exclusion chromatographyâ based isolation minimally alters extracellular vesiclesâ characteristics compared to precipitating agents. Sci Rep. 2016; 6 ( 1 ): 33641. Available from: http://www.nature.com/articles/srep33641 | |
dc.identifier.citedreference | Atai NA, Balaj L, van Veen H, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24002181 | |
dc.identifier.citedreference | Szabó GT, Tarr B, Pálóczi K, et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci. 2014; 71 ( 20 ): 4055 â 4067. Available from: http://link.springer.com/10.1007/s00018â 014â 1618â z | |
dc.identifier.citedreference | Wahlgren J, Karlson TDL, Glader P, et al. Activated human T cells secrete exosomes that participate in ILâ 2Â mediated immune response signaling. PLoS One. 2012; 7 ( 11 ): e49723. Available from: http://dx.plos.org/10.1371/journal.pone.0049723 | |
dc.identifier.citedreference | Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014; 3: 24641. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.24641 | |
dc.identifier.citedreference | Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cellâ surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013; 110 ( 43 ): 17380 â 17385. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1304266110 | |
dc.identifier.citedreference | Franzen CA, Simms PE, Van Huis AF, et al. Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed Res Int. 2014; 2014: 619829. Available from: http://www.hindawi.com/journals/bmri/2014/619829/ | |
dc.identifier.citedreference | Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009; 284 ( 49 ): 34211 â 34222. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M109.041152 | |
dc.identifier.citedreference | Osteikoetxea X, Sódar B, Németh A, et al. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015; 13 ( 38 ): 9775 â 9782. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26264754 | |
dc.identifier.citedreference | Sung BH, Weaver AM. Exosome secretion promotes chemotaxis of cancer cells. Cell Adh Migr. 2017; 11 ( 2 ): 187 â 195. Available from: https://www.tandfonline.com/doi/full/10.1080/19336918.2016.1273307 | |
dc.identifier.citedreference | Sharma A, Mariappan M, Appathurai S, et al. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol Biol. 2010; 619: 339 â 363. Available from: http://link.springer.com/10.1007/978â 1â 60327â 412â 8_20 | |
dc.identifier.citedreference | Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007; 110 ( 7 ): 2440 â 2448. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/bloodâ 2007â 03â 078709 | |
dc.identifier.citedreference | Cvjetkovic A, Jang SC, KoneÄ ná B, et al. Detailed analysis of protein topology of extracellular vesiclesâ evidence of unconventional membrane protein orientation. Sci Rep. 2016; 6 ( 1 ): 36338. Available from: http://www.nature.com/articles/srep36338 | |
dc.identifier.citedreference | van der Pol E, Sturk A, van Leeuwen T, et al., ISTHâ SSCâ VB Working group. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost. 2018; 16 ( 6 ): 1236 â 1245. | |
dc.identifier.citedreference | Daaboul GG, Freedman DS, Scherr SM, et al. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLoS One. 2017; 12 ( 6 ): e0179728. | |
dc.identifier.citedreference | Daaboul GG, Lopez CA, Yurt A, et al. Labelâ free optical biosensors for virus detection and characterization. IEEE J Sel Top Quantum Electron. 2012; 18 ( 4 ): 1422 â 1433. | |
dc.identifier.citedreference | Lee K, Fraser K, Ghaddar B, et al. Multiplexed profiling of single extracellular vesicles. ACS Nano. 2018; 12 ( 1 ): 494 â 503. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07060 | |
dc.identifier.citedreference | Headland SE, Jones HR, Asv D, et al. Cuttingâ edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep. 2014; 4 ( 1 ): 5237. Available from: http://www.nature.com/articles/srep05237 | |
dc.identifier.citedreference | Erdbrügger U, Rudy CK, Etter ME, et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A. 2014; 85 ( 9 ): 756 â 770. | |
dc.identifier.citedreference | Baietti MF, Zhang Z, Mortier E, et al. Syndecanâ synteninâ ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012; 14 ( 7 ): 677 â 685. | |
dc.identifier.citedreference | Wyss R, Grasso L, Wolf C, et al. Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy. Anal Chem. 2014; 86 ( 15 ): 7229 â 7233. Available from: http://pubs.acs.org/doi/10.1021/ac501801m | |
dc.identifier.citedreference | Heusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol. 2016; 213 ( 2 ): 173 â 184. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27114500 | |
dc.identifier.citedreference | Sitar S, Kejžar A, Pahovnik D, et al. Size characterization and quantification of exosomes by asymmetricalâ flow fieldâ flow fractionation. Anal Chem. 2015; 87 ( 18 ): 9225 â 9233. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b01636 | |
dc.identifier.citedreference | Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017; 28 ( 3 ): 256 â 262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28277059 | |
dc.identifier.citedreference | Stoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytom Part A. 2016; 89 ( 2 ): 196 â 206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26484737 | |
dc.identifier.citedreference | Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015; 4 ( 1 ): 28533. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.28533 | |
dc.identifier.citedreference | Carney RP, Hazari S, Colquhoun M, et al. Multispectral optical tweezers for biochemical fingerprinting of CD9â positive exosome subpopulations. Anal Chem. 2017; 89 ( 10 ): 5357 â 5363. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b00017 | |
dc.identifier.citedreference | Tatischeff I, Larquet E, Falcónâ Pérez JM, et al. Fast characterisation of cellâ derived extracellular vesicles by nanoparticles tracking analysis, cryoâ electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. 2012; 1 ( 1 ): 19179. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.19179 | |
dc.identifier.citedreference | Mehdiani A, Maier A, Pinto A, et al. An innovative method for exosome quantification and size measurement. J Vis Exp. 2015; 95: 50974. Available from: http://www.jove.com/video/50974/anâ innovativeâ methodâ forâ exosomeâ quantificationâ andâ sizeâ measurement | |
dc.identifier.citedreference | Chen C, Zong S, Wang Z, et al. Imaging and intracellular tracking of cancerâ derived exosomes using singleâ molecule localizationâ based superâ resolution microscope. ACS Appl Mater Interfaces. 2016; 8 ( 39 ): 25825 â 25833. Available from: http://pubs.acs.org/doi/10.1021/acsami.6b09442 | |
dc.identifier.citedreference | Treps L, Perret R, Edmond S, et al. Glioblastoma stemâ like cells secrete the proâ angiogenic VEGFâ A factor in extracellular vesicles. J Extracell Vesicles. 2017; 6 ( 1 ): 1359479. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359479 | |
dc.identifier.citedreference | Sharma S, Rasool HI, Palanisamy V, et al. Structuralâ mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010; 4 ( 4 ): 1921 â 1926. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20218655 | |
dc.identifier.citedreference | Höög JL, Lötvall J Diversity of extracellular vesicles in human ejaculates revealed by cryoâ electron microscopy. J Extracell Vesicles. 2015; 4: 28680. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26563734 | |
dc.identifier.citedreference | Linares R, Tan S, Gounou C, et al. Highâ speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 2015; 4 ( 0 ): 29509. Available from: http://www.journalofextracellularvesicles.net/index.php/jev/article/view/29509 | |
dc.identifier.citedreference | Wu Y, Deng W, Klinke DJ. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015; 140 ( 19 ): 6631 â 6642. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26332016 | |
dc.identifier.citedreference | Terâ Ovanesyan D, Kowal EJK, Regev A, et al. Imaging of isolated extracellular vesicles using fluorescence microscopy. Methods Mol Biol. 2017; 1660: 233 â 241. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7253â 1_19 | |
dc.identifier.citedreference | Lai CP, Kim EY, Badr CE., et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015; 6 ( May ): 7029. | |
dc.identifier.citedreference | Chen M, Xu R, Ji H, et al. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep. 2016; 6 ( 1 ): 38397. Available from: http://www.nature.com/articles/srep38397 | |
dc.identifier.citedreference | Li K, Rodosthenous RS, Kashanchi F, et al. Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA strategic workshop. JCI Insight. 2018; 3 ( 7 ). Available from: https://insight.jci.org/articles/view/98942 | |
dc.identifier.citedreference | van Balkom BWM, Eisele AS, Pegtel DM, et al. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015; 4 ( 1 ): 26760. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26760 | |
dc.identifier.citedreference | Tosar JP, Gambaro F, Sanguinetti J, et al. Assessment of small RNA sorting into different extracellular fractions revealed by highâ throughput sequencing of breast cell lines. Nucleic Acids Res. 2015; 43 ( 11 ): 5601 â 5616. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25940616 | |
dc.identifier.citedreference | Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small nonâ coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014; 42 ( 11 ): 7290 â 7304. Available from: https://academic.oup.com/nar/articleâ lookup/doi/10.1093/nar/gku347 | |
dc.identifier.citedreference | Villarroyaâ Beltri C, Gutierrezâ Vazquez C, Sanchezâ Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013; 4: 2980. [2013/12/21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24356509 | |
dc.identifier.citedreference | Nolteâ ’t Hoen EN, Buermans HP, Waasdorp M, et al. Deep sequencing of RNA from immune cellâ derived vesicles uncovers the selective incorporation of small nonâ coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22821563 | |
dc.identifier.citedreference | Crescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013; 2 ( 1 ): 20677. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24223256 | |
dc.identifier.citedreference | Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapyâ resistant breast cancer. Proc Natl Acad Sci U S A. 2017; 114 ( 43 ): E9066 â 75. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1704862114 | |
dc.identifier.citedreference | Ullal AJ, Pisetsky DS, Reich CF. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A. 2010; 77 ( 3 ): 294 â 301. | |
dc.identifier.citedreference | de Rond L, van der Pol E, Hau CM, et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin Chem. 2018; 64 ( 4 ): 680 â 689. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2017.278978 | |
dc.identifier.citedreference | Neri T, Lombardi S, Faìta F, et al. Pirfenidone inhibits p38â mediated generation of procoagulant microparticles by human alveolar epithelial cells. Pulm Pharmacol Ther. 2016; 39: 1 â 6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27237042 | |
dc.identifier.citedreference | Gualerzi A, Niada S, Giannasi C, et al. Raman spectroscopy uncovers biochemical tissueâ related features of extracellular vesicles from mesenchymal stromal cells. Sci Rep. 2017; 7 ( 1 ): 9820. Available from: http://www.nature.com/articles/s41598â 017â 10448â 1 | |
dc.identifier.citedreference | de Gassart A, Geminard C, Fevrier B, et al. Lipid raftâ associated protein sorting in exosomes. Blood. 2003; 102 ( 13 ): 4336 â 4344. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12881314 | |
dc.identifier.citedreference | Nielsen MH, Beckâ Nielsen H, Andersen MN, et al. A flow cytometric method for characterization of circulating cellâ derived microparticles in plasma. J Extracell Vesicles. 2014; 3 ( 1 ): 20795. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.20795 | |
dc.identifier.citedreference | Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cellâ cell communication and various pathophysiologies. Biochim Biophys Acta. 2014; 1841 ( 1 ): 108 â 120. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1388198113002199 | |
dc.identifier.citedreference | Skotland T, Sandvig K, Llorente A Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017; 66: 30 â 41. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0163782716300492 | |
dc.identifier.citedreference | Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018; 118 ( 4 ): 1917 â 1950. Available from: http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00534 | |
dc.identifier.citedreference | Zhu L, Wang K, Cui J, et al. Labelâ free quantitative detection of tumorâ derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014; 86 ( 17 ): 8857 â 8864. Available from: http://pubs.acs.org/doi/10.1021/ac5023056 | |
dc.identifier.citedreference | Gool EL, Stojanovic I, Schasfoort RBM, et al. Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin Chem. 2017; 63 ( 10 ): 1633 â 1641. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2016.271049 | |
dc.identifier.citedreference | Jorgensen MM, Baek R, Varming K Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015; 4: 26048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25862471 | |
dc.identifier.citedreference | Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in Tâ cell activation by dendritic cellâ derived extracellular vesicle subtypes. Embo J. 2017; 36 ( 20 ): 3012 â 3028. Available from: http://emboj.embopress.org/lookup/doi/10.15252/embj.201696003 | |
dc.identifier.citedreference | Buck AH, Coakley G, Simbari F, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014; 5 ( 1 ): 5488. Available from: http://www.nature.com/articles/ncomms6488 | |
dc.identifier.citedreference | Melo SAA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cellâ independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014; 26 ( 5 ): 707 â 721. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25446899 | |
dc.identifier.citedreference | McKenzie AJ, Hoshino D, Hong NH, et al. KRASâ MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016; 15 ( 5 ): 978 â 987. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27117408 | |
dc.identifier.citedreference | Van Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014; 3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317274 | |
dc.identifier.citedreference | Musante L, Saraswat M, Duriez E, et al. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS One. 2012; 7 ( 7 ): e37279. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22808001 | |
dc.identifier.citedreference | Ã stergaard O, Nielsen CT, Iversen LV, et al. Quantitative proteome profiling of normal human circulating microparticles. J Proteome Res. 2012; 11 ( 4 ): 2154 â 2163. Available from: http://pubs.acs.org/doi/10.1021/pr200901p | |
dc.identifier.citedreference | Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018; 75 ( 15 ): 2873 â 2886. Available from: http://link.springer.com/10.1007/s00018â 018â 2773â 4 | |
dc.identifier.citedreference | Sódar BW, Kittel à , Pálóczi K, et al. Lowâ density lipoprotein mimics blood plasmaâ derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016; 6: 24316. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27087061 | |
dc.identifier.citedreference | Meehan B, Rak J, Di Vizio D Oncosomes â large and small: what are they, where they came from? J Extracell Vesicles. 2016; 5: 33109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27680302 | |
dc.identifier.citedreference | Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016; 6 ( 1 ): 22519. Available from: http://www.nature.com/articles/srep22519 | |
dc.identifier.citedreference | Xu R, Greening DW, Rai A, et al. Highlyâ purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods. 2015; 87: 11 â 25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1046202315001541 | |
dc.identifier.citedreference | Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci. 2016; 113 ( 8 ): E968 â 77. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1521230113 | |
dc.identifier.citedreference | Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyteâ derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 2017; 6 ( 1 ): 1305677. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1305677 | |
dc.identifier.citedreference | Clark DJ, Fondrie WE, Liao Z, et al. Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem. 2015; 87 ( 20 ): 10462 â 10469. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b02586 | |
dc.identifier.citedreference | Haraszti RA, Didiot Mâ C, Sapp E, et al. Highâ resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016; 5 ( 1 ): 32570. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.32570 | |
dc.identifier.citedreference | Keerthikumar S, Gangoda L, Liem M, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015; 6 ( 17 ): 15375 â 15396. Available from: http://www.oncotarget.com/fulltext/3801 | |
dc.identifier.citedreference | Minciacchi VR, You S, Spinelli C, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumorâ derived extracellular vesicles. Oncotarget. 2015; 6 ( 13 ): 11327 â 11341. Available from: http://www.oncotarget.com/fulltext/3598 | |
dc.identifier.citedreference | Valkonen S, van der Pol E, Böing A, et al. Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci. 2017; 98: 4 â 16. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0928098716303578 | |
dc.identifier.citedreference | Cvjetkovic A, Lotvall J, Lasser C The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014; 3: 23111. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24678386 | |
dc.identifier.citedreference | Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010; 4 ( 3 ): 214 â 222. | |
dc.identifier.citedreference | Maiolo D, Paolini L, Di Noto G, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015; 87 ( 8 ): 4168 â 4176. Available from: http://pubs.acs.org/doi/abs/10.1021/ac504861d | |
dc.identifier.citedreference | Webber J, Clayton A How pure are your vesicles? J Extracell Vesicles. 2013; 2: 19861. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009896 | |
dc.identifier.citedreference | Rupert DLM, Lässer C, Eldh M, et al. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem. 2014; 86 ( 12 ): 5929 â 5936. Available from: http://pubs.acs.org/doi/10.1021/ac500931f | |
dc.identifier.citedreference | Liang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumorâ derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng. 2017; 1 ( 4 ): 0021. Available from: http://www.nature.com/articles/s41551â 016â 0021 | |
dc.identifier.citedreference | Xia Y, Liu M, Wang L, et al. A visible and colorimetric aptasensor based on DNAâ capped singleâ walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017; 92: 8 â 15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0956566317300635 | |
dc.identifier.citedreference | Koliha N, Wiencek Y, Heider U, et al. A novel multiplex beadâ based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016; 5: 29975. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26901056 | |
dc.identifier.citedreference | Suárez H, Gámezâ Valero A, Reyes R, et al. A beadâ assisted flow cytometry method for the semiâ quantitative analysis of extracellular vesicles. Sci Rep. 2017; 7 ( 1 ): 11271. Available from: http://www.nature.com/articles/s41598â 017â 11249â 2 | |
dc.identifier.citedreference | Duijvesz D, Versluis CYL, van der Fels CAM, et al. Immunoâ based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int J Cancer. 2015; 137 ( 12 ): 2869 â 2878. | |
dc.identifier.citedreference | Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by highâ density lipoproteins. Nat Cell Biol. 2011; 13 ( 4 ): 423 â 433. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21423178 | |
dc.identifier.citedreference | Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011; 108 ( 12 ): 5003 â 5008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21383194 | |
dc.identifier.citedreference | Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39 ( 16 ): 7223 â 7233. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21609964 | |
dc.identifier.citedreference | Mihály J, Deák R, Szigyártó IC, et al. Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations. Biochim Biophys Acta. 2017; 1859 ( 3 ): 459 â 466. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000527361630390X | |
dc.identifier.citedreference | Benmoussa A, Ly S, Shan ST, et al. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J Extracell Vesicles. 2017; 6 ( 1 ): 1401897. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1401897 | |
dc.identifier.citedreference | Osteikoetxea X, Balogh A, Szabóâ Taylor K, et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One. 2015; 10 ( 3 ): e0121184. Available from: http://dx.plos.org/10.1371/journal.pone.0121184 | |
dc.identifier.citedreference | Gardiner C, Ferreira YJ, Dragovic RA, et al. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013; 2: 19671. Available from: | |
dc.identifier.citedreference | Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011; 7 ( 6 ): 780 â 788. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21601655 | |
dc.identifier.citedreference | van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014; 12 ( 7 ): 1182 â 1192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24818656 | |
dc.identifier.citedreference | Takov K, Yellon DM, Davidson SM Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles. 2017; 6 ( 1 ): 1388731. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29184625 | |
dc.identifier.citedreference | Carnellâ Morris P, Tannetta D, Siupa A, et al. Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol Biol. 2017; 1660: 153 â 173. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7253â 1_13 | |
dc.identifier.citedreference | van der Pol E, Hoekstra AG, Sturk A, et al. Optical and nonâ optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010; 8 ( 12 ): 2596 â 2607. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20880256 | |
dc.identifier.citedreference | Libregts SFWM, Arkesteijn GJA, Németh A, et al. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of nonâ interest. J Thromb Haemost. 2018; 16 ( 7 ): 1423 â 1436. | |
dc.identifier.citedreference | Obeid S, Ceroi A, Mourey G, et al. Development of a NanoBioAnalytical platform for onâ chip qualification and quantification of plateletâ derived microparticles. Biosens Bioelectron. 2017; 93: 250 â 259. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956566316308569 | |
dc.identifier.citedreference | de Vrij J, Maas SL, van Nispen M, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (Lond). 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23384702 | |
dc.identifier.citedreference | Maas SLN, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015; 200: 87 â 96. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365914008384 | |
dc.identifier.citedreference | Arraud N, Gounou C, Linares R, et al. A simple flow cytometry method improves the detection of phosphatidylserineâ exposing extracellular vesicles. J Thromb Haemost. 2015; 13 ( 2 ): 237 â 247. | |
dc.identifier.citedreference | Arraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014; 12 ( 5 ): 614 â 627. | |
dc.identifier.citedreference | Nolan JP, Stoner SA. A trigger channel threshold artifact in nanoparticle analysis. Cytometry A. 2013; 83 ( 3 ): 301 â 305. | |
dc.identifier.citedreference | McVey MJ, Spring CM, Kuebler WM. Improved resolution in extracellular vesicle populations using 405Â instead of 488Â nm side scatter. J Extracell Vesicles. 2018; 7 ( 1 ): 1454776. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1454776 | |
dc.identifier.citedreference | Tian Y, Ma L, Gong M, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano. 2018; 12 ( 1 ): 671 â 680. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07782 | |
dc.identifier.citedreference | Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015; 4 ( 1 ): 25530. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.25530 | |
dc.identifier.citedreference | van der Pol E, van Gemert MJ, Sturk A, et al. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012/03/08. 2012; 10 ( 5 ): 919 â 930. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22394434 | |
dc.identifier.citedreference | van der Vlist EJ, Nolteâ ’T Hoen EN, Stoorvogel W, et al. Fluorescent labeling of nanoâ sized vesicles released by cells and subsequent quantitative and qualitative analysis by highâ resolution flow cytometry. Nat Protoc. 2012/06/23. 2012; 7 ( 7 ): 1311 â 1326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22722367 | |
dc.identifier.citedreference | Atkinâ Smith GK, Tixeira R, Paone S, et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beadsâ onâ aâ string membrane structure. Nat Commun. 2015; 6: 7439. Available from: http://www.nature.com/doifinder/10.1038/ncomms8439 | |
dc.identifier.citedreference | McVey MJ, Spring CM, Semple JW, et al. Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres. Am J Physiol Lung Cell Mol Physiol. 2016; 310 ( 9 ): L802 â 14. Available from: http://www.physiology.org/doi/10.1152/ajplung.00369.2015 | |
dc.identifier.citedreference | Krishnan SR, Luk F, Brown RD, et al. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016; 18 ( 1 ): 25 â 32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1476558615001566 | |
dc.identifier.citedreference | Cointe S, Judicone C, Robert S, et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost. 2017; 15 ( 1 ): 187 â 193. | |
dc.identifier.citedreference | Ortiz A, Sanchezâ Niño MD, Sanz AB The meaning of urinary creatinine concentration. Kidney Int. 2011; 79 ( 7 ): 791. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0085253815548849 | |
dc.identifier.citedreference | Mitchell JP, Court J, Mason MD, et al. Increased exosome production from tumour cell cultures using the integra celline culture system. J Immunol Meth. 2008; 335 ( 1â 2 ): 98 â 105. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175908000926 | |
dc.identifier.citedreference | Van Deun J, Mestdagh P, Agostinis P, et al. EVâ TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017; 14 ( 3 ): 228 â 232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28245209 | |
dc.identifier.citedreference | Li K, Wong DK, Hong KY, et al. Cushionedâ density gradient ultracentrifugation (Câ DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol Biol. 2018; 1740: 69 â 83. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7652â 2_7 | |
dc.identifier.citedreference | Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosomeâ mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013; 7 ( 9 ): 7698 â 7710. Available from: http://pubs.acs.org/doi/10.1021/nn402232g | |
dc.identifier.citedreference | Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015; 5 ( 1 ): 17319. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26616523 | |
dc.identifier.citedreference | Jeppesen DK, Hvam ML, Primdahlâ Bengtson B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014; 3: 25011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25396408 | |
dc.identifier.citedreference | Enderle D, Spiel A, Coticchia CM, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin columnâ based method. PLoS One. 2015; 10 ( 8 ): e0136133. Available from: http://dx.plos.org/10.1371/journal.pone.0136133 | |
dc.identifier.citedreference | Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinityâ based method with sizeâ exclusion chromatography for isolation of exosomeâ like vesicles from human plasma. J Transl Med. 2018; 16 ( 1 ): 1. Available from: https://translationalâ medicine.biomedcentral.com/articles/10.1186/s12967â 017â 1374â 6 | |
dc.identifier.citedreference | Böing AN, van der Pol E, Grootemaat AE, et al. Singleâ step isolation of extracellular vesicles by sizeâ exclusion chromatography. J Extracell Vesicles. 2014; 3: 23430. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.23430 | |
dc.identifier.citedreference | Reátegui E, van der Vos KE, Lai CP, et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumorâ specific extracellular vesicles. Nat Commun. 2018; 9 ( 1 ): 175. Available from: http://www.nature.com/articles/s41467â 017â 02261â 1 | |
dc.identifier.citedreference | Wang Z, Wu H, Fine D, et al. Ciliated micropillars for the microfluidicâ based isolation of nanoscale lipid vesicles. Lab Chip. 2013; 13 ( 15 ): 2879 â 2882. | |
dc.identifier.citedreference | Zhao Z, Yang Y, Zeng Y, et al. A microfluidic exosearch chip for multiplexed exosome detection towards bloodâ based ovarian cancer diagnosis. Lab Chip. 2016; 16 ( 3 ): 489 â 496. | |
dc.identifier.citedreference | Yasui T, Yanagida T, Ito S, et al. Unveiling massive numbers of cancerâ related urinaryâ microRNA candidates via nanowires. Sci Adv. 2017; 3 ( 12 ): e1701133. Available from: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1701133 | |
dc.identifier.citedreference | Shin S, Han D, Park MC, et al. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci Rep. 2017; 7 ( 1 ): 9907. Available from: http://www.nature.com/articles/s41598â 017â 08826â w | |
dc.identifier.citedreference | Liang Lâ G, Kong Mâ Q, Zhou S, et al. An integrated doubleâ filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep. 2017; 7: 46224. Available from: http://www.nature.com/articles/srep46224 | |
dc.identifier.citedreference | Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010/02/04. 2010; 10 ( 4 ): 505 â 511. | |
dc.identifier.citedreference | Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017; 114 ( 40 ): 10584 â 10589. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1709210114 | |
dc.identifier.citedreference | Contrerasâ Naranjo JC, Wu Hâ J, Ugaz VM Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017; 17 ( 21 ): 3558 â 3577. | |
dc.identifier.citedreference | Sedykh SE, Purvinish LV, Monogarov AS, et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochim Open. 2017; 4: 61 â 72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2214008517300056 | |
dc.identifier.citedreference | Musante L, Tataruch D, Gu D, et al. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep. 2014; 4 ( 1 ): 7532. Available from: http://www.nature.com/articles/srep07532 | |
dc.identifier.citedreference | Hurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates epsteinâ barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NFâ κB signaling. J Virol. 2017; 91 ( 5 ): e02251 â 16. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.02251â 16 | |
dc.identifier.citedreference | Shin H, Han C, Labuz JM, et al. Highâ yield isolation of extracellular vesicles using aqueous twoâ phase system. Sci Rep. 2015; 5 ( 1 ): 13103. Available from: http://www.nature.com/articles/srep13103 | |
dc.identifier.citedreference | Gallartâ Palau X, Serra A, Wong ASW, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015; 5 ( 1 ): 14664. Available from: http://www.nature.com/articles/srep14664 | |
dc.identifier.citedreference | Lai RC, Tan SS, Yeo RWY, et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles. 2016; 5 ( 1 ): 29828. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.29828 | |
dc.identifier.citedreference | Welton JL, Loveless S, Stone T, et al. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J Extracell Vesicles. 2017; 6 ( 1 ): 1369805. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1369805 | |
dc.identifier.citedreference | Nakai W, Yoshida T, Diez D, et al. A novel affinityâ based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016; 6 ( 1 ): 33935. Available from: http://www.nature.com/articles/srep33935 | |
dc.identifier.citedreference | Brett SI, Lucien F, Guo C, et al. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Prostate. 2017; 77 ( 13 ): 1335 â 1343. | |
dc.identifier.citedreference | Sharma P, Ludwig S, Muller L, et al. Immunoaffinityâ based isolation of melanoma cellâ derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018; 7 ( 1 ): 1435138. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1435138 | |
dc.identifier.citedreference | Fang X, Duan Y, Adkins GB, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterialâ based platform. Anal Chem. 2018; 90 ( 4 ): 2787 â 2795. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b04861 | |
dc.identifier.citedreference | Balaj L, Atai NA, Chen W, et al. Heparin affinity purification of extracellular vesicles. Sci Rep. 2015; 5: 10266. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25988257 | |
dc.identifier.citedreference | Ghosh A, Davey M, Chute IC, et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One. 2014; 9 ( 10 ): e110443. Available from: http://dx.plos.org/10.1371/journal.pone.0110443 | |
dc.identifier.citedreference | Echevarria J, Royo F, Pazos R, et al. Microarrayâ based identification of lectins for the purification of human urinary extracellular vesicles directly from urine samples. Chembiochem. 2014; 15 ( 11 ): 1621 â 1626. | |
dc.identifier.citedreference | Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20â nm. Nat Nanotechnol. 2016; 11 ( 11 ): 936 â 940. Available from: http://www.nature.com/articles/nnano.2016.134 | |
dc.identifier.citedreference | Minciacchi VR, Spinelli C, Reisâ Sobreiro M, et al. MYC mediates large oncosomeâ induced fibroblast reprogramming in prostate cancer. Cancer Res. 2017; 77 ( 9 ): 2306 â 2317. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008â 5472.CANâ 16â 2942 | |
dc.identifier.citedreference | Atkinâ Smith GK, Paone S, Zanker DJ, et al. Isolation of cell typeâ specific apoptotic bodies by fluorescenceâ activated cell sorting. Sci Rep. 2017; 7: 39846. Available from: http://www.nature.com/articles/srep39846 | |
dc.identifier.citedreference | Groot Kormelink T, Arkesteijn GJA, Nauwelaers FA, et al. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by highâ resolution flow cytometry. Cytometry A. 2016; 89 ( 2 ): 135 â 147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25688721 | |
dc.identifier.citedreference | Higginbotham JN, Zhang Q, Jeppesen DK, et al. Identification and characterization of EGF receptor in individual exosomes by fluorescenceâ activated vesicle sorting. J Extracell Vesicles. 2016; 5: 29254. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27345057 | |
dc.identifier.citedreference | Merchant ML, Powell DW, Wilkey DW, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. PROTEOMICS â Clin Appl. 2010; 4 ( 1 ): 84 â 96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21137018 | |
dc.identifier.citedreference | Kim D, Nishida H, An SY, et al. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci. 2016; 113 ( 1 ): 170 â 175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26699510 | |
dc.identifier.citedreference | Heath N, Grant L, De Oliveira TM, et al. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci Rep. 2018; 8 ( 1 ): 5730. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29636530 | |
dc.identifier.citedreference | KosanoviÄ M, MilutinoviÄ B, GoÄ S, et al. Ionâ exchange chromatography purification of extracellular vesicles. Biotechniques. 2017; 63 ( 2 ): 65 â 71. Available from: https://www.futureâ science.com/doi/10.2144/000114575 | |
dc.identifier.citedreference | de Menezesâ Neto A, Sáez MJF, Lozanoâ Ramos I, et al. Sizeâ exclusion chromatography as a standâ alone methodology identifies novel markers in mass spectrometry analyses of plasmaâ derived vesicles from healthy individuals. J Extracell Vesicles. 2015; 4: 27378. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26154623 | |
dc.identifier.citedreference | Mol EA, Goumans Mâ J, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using sizeâ exclusion chromatography compared to ultracentrifugation. Nanomedicine. 2017; 13 ( 6 ): 2061 â 2065. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1549963417300540 | |
dc.identifier.citedreference | Satzer P, Wellhoefer M, Jungbauer A. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography. J Chromatogr A. 2014; 1349: 44 â 49. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314006979 | |
dc.identifier.citedreference | Lee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano. 2015; 9 ( 3 ): 2321 â 2327. Available from: http://pubs.acs.org/doi/10.1021/nn506538f | |
dc.identifier.citedreference | Lewis JM, Vyas AD, Qiu Y, et al. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano. 2018; 12 ( 4 ): 3311 â 3320. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b08199 | |
dc.identifier.citedreference | Ibsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano. 2017; 11 ( 7 ): 6641 â 6651. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b00549 | |
dc.identifier.citedreference | Liu C, Guo J, Tian F, et al. Fieldâ free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017; 11 ( 7 ): 6968 â 6976. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b02277 | |
dc.identifier.citedreference | Agarwal K, Saji M, Lazaroff SM, et al. Analysis of exosome release as a cellular response to MAPK pathway inhibition. Langmuir. 2015; 31 ( 19 ): 5440 â 5448. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25915504 | |
dc.identifier.citedreference | Yang JS, Lee JC, Byeon SK, et al. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow fieldâ flow fractionation and nanoflow liquid chromatographyâ tandem mass spectrometry. Anal Chem. 2017; 89 ( 4 ): 2488 â 2496. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.6b04634 | |
dc.identifier.citedreference | Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow fieldâ flow fractionation. Nat Cell Biol. 2018; 20 ( 3 ): 332 â 343. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29459780 | |
dc.identifier.citedreference | Roda B, Zattoni A, Reschiglian P, et al. Fieldâ flow fractionation in bioanalysis: A review of recent trends. Anal Chim Acta. 2009; 635 ( 2 ): 132 â 143. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003267009000865 | |
dc.identifier.citedreference | Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derivedâ exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005; 3 ( 1 ): 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15740633 | |
dc.identifier.citedreference | Lamparski HG, Methaâ Damani A, Yao JY, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Meth. 2002; 270 ( 2 ): 211 â 226. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12379326 | |
dc.identifier.citedreference | Wei Z, Batagov AO, Schinelli S, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 2017; 8 ( 1 ): 1145. Available from: http://www.nature.com/articles/s41467â 017â 01196â x | |
dc.identifier.citedreference | Heinemann ML, Vykoukal J Sequential filtration: A gentle method for the isolation of functional extracellular vesicles. In: Methods in molecular biology. Clifton, NJ. 2017. p. 33 â 41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28828646 | |
dc.identifier.citedreference | Heinemann ML, Ilmer M, Silva LP, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014; 1371: 125 â 135. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314015908 | |
dc.identifier.citedreference | Jong AY, Wu Câ H, Li J, et al. Largeâ scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017; 6 ( 1 ): 1294368. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1294368 | |
dc.identifier.citedreference | Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cellâ derived exosomes promote hepatic regeneration in drugâ induced liver injury models. Stem Cell Res Ther. 2014; 5 ( 3 ): 76. Available from: http://stemcellres.com/content/5/3/76 | |
dc.identifier.citedreference | Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015; 4: 27031. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.27031 | |
dc.identifier.citedreference | Vergauwen G, Dhondt B, Van Deun J, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep. 2017; 7 ( 1 ): 2704. Available from: http://www.nature.com/articles/s41598â 017â 02599â y | |
dc.identifier.citedreference | Welton JL, Webber JP, Botos Lâ A, et al. Readyâ made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles. 2015; 4: 27269. Available from: http://www.tandfonline.com/doi/full/10.3402/jev.v4.27269 | |
dc.identifier.citedreference | Corso G, Mäger I, Lee Y, et al. Reproducible and scalable purification of extracellular vesicles using combined bindâ elute and size exclusion chromatography. Sci Rep. 2017; 7 ( 1 ): 11561. Available from: http://www.nature.com/articles/s41598â 017â 10646â x | |
dc.identifier.citedreference | Moralesâ Kastresana A, Telford B, Musich TA, et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep. 2017; 7 ( 1 ): 1878. Available from: http://www.nature.com/articles/s41598â 017â 01731â 2 | |
dc.identifier.citedreference | Montis C, Zendrini A, Valle F, et al. Size distribution of extracellular vesicles by optical correlation techniques. Colloids Surf B Biointerfaces. 2017; 158: 331 â 338. Available from: http://linkinghub.elsevier.com/retrieve/pii/S092777651730406X | |
dc.identifier.citedreference | Clayton A, Buschmann D, Byrd JB, et al. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles. 2018; 7 ( 1 ): 1473707. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1473707 | |
dc.identifier.citedreference | Reiner AT, Witwer KW, Van Balkom BWM, et al. Concise review: developing bestâ practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017; 6 ( 8 ). | |
dc.identifier.citedreference | Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials â an ISEV position paper. J Extracell Vesicles. 2015; 4: 30087. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4698466&tool=pmcentrez&rendertype=abstract | |
dc.identifier.citedreference | Trummer A, De Rop C, Tiede A, et al. Recovery and composition of microparticles after snapâ freezing depends on thawing temperature. Blood Coagul Fibrinolysis. 2009; 20 ( 1 ): 52 â 56. Available from: https://insights.ovid.com/crossref?an=00001721â 200901000â 00010 | |
dc.identifier.citedreference | Jeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. Aaps J. 2017; 20 ( 1 ): 1. Available from: http://link.springer.com/10.1208/s12248â 017â 0160â y | |
dc.identifier.citedreference | Jin Y, Chen K, Wang Z, et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer. 2016; 16 ( 1 ): 753. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27662833 | |
dc.identifier.citedreference | Maroto R, Zhao Y, Jamaluddin M, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles. 2017; 6 ( 1 ): 1359478. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359478 | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.