Show simple item record

Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

dc.contributor.authorMore than 100 authorsen_US
dc.date.accessioned2020-12-02T14:38:25Z
dc.date.available2020-12-02T14:38:25Z
dc.date.issued2018-12
dc.identifier.citationThéry, Clotilde ; Witwer, Kenneth W; Aikawa, Elena; Alcaraz, Maria Jose; Anderson, Johnathon D; Andriantsitohaina, Ramaroson; Antoniou, Anna; Arab, Tanina; Archer, Fabienne; Atkin‐smith, Georgia K ; Ayre, D Craig; Bach, Jean‐marie ; Bachurski, Daniel; Baharvand, Hossein; Balaj, Leonora; Baldacchino, Shawn; Bauer, Natalie N; Baxter, Amy A; Bebawy, Mary; Beckham, Carla; Bedina Zavec, Apolonija; Benmoussa, Abderrahim; Berardi, Anna C; Bergese, Paolo; Bielska, Ewa; Blenkiron, Cherie; Bobis‐wozowicz, Sylwia ; Boilard, Eric; Boireau, Wilfrid; Bongiovanni, Antonella; Borràs, Francesc E ; Bosch, Steffi; Boulanger, Chantal M; Breakefield, Xandra; Breglio, Andrew M; Brennan, Meadhbh Á ; Brigstock, David R; Brisson, Alain; Broekman, Marike LD; Bromberg, Jacqueline F; Bryl‐górecka, Paulina ; Buch, Shilpa; Buck, Amy H; Burger, Dylan; Busatto, Sara; Buschmann, Dominik; Bussolati, Benedetta; Buzás, Edit I ; Byrd, James Bryan; Camussi, Giovanni; Carter, David RF; Caruso, Sarah; Chamley, Lawrence W; Chang, Yu‐ting ; Chen, Chihchen; Chen, Shuai; Cheng, Lesley; Chin, Andrew R; Clayton, Aled; Clerici, Stefano P; Cocks, Alex; Cocucci, Emanuele; Coffey, Robert J; Cordeiro‐da‐silva, Anabela ; Couch, Yvonne; Coumans, Frank AW; Coyle, Beth; Crescitelli, Rossella; Criado, Miria Ferreira; D’Souza‐schorey, Crislyn ; Das, Saumya; Datta Chaudhuri, Amrita; Candia, Paola; De Santana, Eliezer F; De Wever, Olivier; Portillo, Hernando A; Demaret, Tanguy; Deville, Sarah; Devitt, Andrew; Dhondt, Bert; Di Vizio, Dolores; Dieterich, Lothar C; Dolo, Vincenza; Dominguez Rubio, Ana Paula; Dominici, Massimo; Dourado, Mauricio R; Driedonks, Tom AP; Duarte, Filipe V; Duncan, Heather M; Eichenberger, Ramon M; Ekström, Karin ; El Andaloussi, Samir ; Elie‐caille, Celine ; Erdbrügger, Uta ; Falcón‐pérez, Juan M ; Fatima, Farah; Fish, Jason E; Flores‐bellver, Miguel ; Försönits, András ; Frelet‐barrand, Annie ; Fricke, Fabia; Fuhrmann, Gregor; Gabrielsson, Susanne; Gámez‐valero, Ana ; Gardiner, Chris; Gärtner, Kathrin ; Gaudin, Raphael; Gho, Yong Song; Giebel, Bernd; Gilbert, Caroline; Gimona, Mario; Giusti, Ilaria; Goberdhan, Deborah CI; Görgens, André ; Gorski, Sharon M; Greening, David W; Gross, Julia Christina; Gualerzi, Alice; Gupta, Gopal N; Gustafson, Dakota; Handberg, Aase; Haraszti, Reka A; Harrison, Paul; Hegyesi, Hargita; Hendrix, An; Hill, Andrew F; Hochberg, Fred H; Hoffmann, Karl F; Holder, Beth; Holthofer, Harry; Hosseinkhani, Baharak; Hu, Guoku; Huang, Yiyao; Huber, Veronica; Hunt, Stuart; Ibrahim, Ahmed Gamal‐eldin ; Ikezu, Tsuneya; Inal, Jameel M; Isin, Mustafa; Ivanova, Alena; Jackson, Hannah K; Jacobsen, Soren; Jay, Steven M; Jayachandran, Muthuvel; Jenster, Guido; Jiang, Lanzhou; Johnson, Suzanne M; Jones, Jennifer C; Jong, Ambrose; Jovanovic‐talisman, Tijana ; Jung, Stephanie; Kalluri, Raghu; Kano, Shin‐ichi ; Kaur, Sukhbir; Kawamura, Yumi; Keller, Evan T; Khamari, Delaram; Khomyakova, Elena; Khvorova, Anastasia; Kierulf, Peter; Kim, Kwang Pyo; Kislinger, Thomas; Klingeborn, Mikael; Klinke, David J; Kornek, Miroslaw; Kosanović, Maja M ; Kovács, Árpád Ferenc ; Krämer‐albers, Eva‐maria ; Krasemann, Susanne; Krause, Mirja; Kurochkin, Igor V; Kusuma, Gina D; Kuypers, Sören ; Laitinen, Saara; Langevin, Scott M; Languino, Lucia R; Lannigan, Joanne; Lässer, Cecilia ; Laurent, Louise C; Lavieu, Gregory; Lázaro‐ibáñez, Elisa ; Le Lay, Soazig; Lee, Myung‐shin ; Lee, Yi Xin Fiona; Lemos, Debora S; Lenassi, Metka; Leszczynska, Aleksandra; Li, Isaac TS; Liao, Ke; Libregts, Sten F; Ligeti, Erzsebet; Lim, Rebecca; Lim, Sai Kiang; Linē, Aija ; Linnemannstöns, Karen ; Llorente, Alicia; Lombard, Catherine A; Lorenowicz, Magdalena J; Lörincz, Ákos M ; Lötvall, Jan ; Lovett, Jason; Lowry, Michelle C; Loyer, Xavier; Lu, Quan; Lukomska, Barbara; Lunavat, Taral R; Maas, Sybren LN; Malhi, Harmeet; Marcilla, Antonio; Mariani, Jacopo; Mariscal, Javier; Martens‐uzunova, Elena S ; Martin‐jaular, Lorena ; Martinez, M Carmen; Martins, Vilma Regina; Mathieu, Mathilde; Mathivanan, Suresh; Maugeri, Marco; McGinnis, Lynda K; McVey, Mark J; Meckes, David G; Meehan, Katie L; Mertens, Inge; Minciacchi, Valentina R; Möller, Andreas ; Møller Jørgensen, Malene ; Morales‐kastresana, Aizea ; Morhayim, Jess; Mullier, François ; Muraca, Maurizio; Musante, Luca; Mussack, Veronika; Muth, Dillon C; Myburgh, Kathryn H; Najrana, Tanbir; Nawaz, Muhammad; Nazarenko, Irina; Nejsum, Peter; Neri, Christian; Neri, Tommaso; Nieuwland, Rienk; Nimrichter, Leonardo; Nolan, John P; Nolte‐’T Hoen, Esther Nm ; Noren Hooten, Nicole; O’Driscoll, Lorraine; O’Grady, Tina; O’Loghlen, Ana; Ochiya, Takahiro; Olivier, Martin; Ortiz, Alberto; Ortiz, Luis A; Osteikoetxea, Xabier; Østergaard, Ole ; Ostrowski, Matias; Park, Jaesung; Pegtel, D. Michiel; Peinado, Hector; Perut, Francesca; Pfaffl, Michael W; Phinney, Donald G; Pieters, Bartijn CH; Pink, Ryan C; Pisetsky, David S; Pogge von Strandmann, Elke; Polakovicova, Iva; Poon, Ivan KH; Powell, Bonita H; Prada, Ilaria; Pulliam, Lynn; Quesenberry, Peter; Radeghieri, Annalisa; Raffai, Robert L; Raimondo, Stefania; Rak, Janusz; Ramirez, Marcel I; Raposo, Graça ; Rayyan, Morsi S; Regev‐rudzki, Neta ; Ricklefs, Franz L; Robbins, Paul D; Roberts, David D; Rodrigues, Silvia C; Rohde, Eva; Rome, Sophie; Rouschop, Kasper MA; Rughetti, Aurelia; Russell, Ashley E; Saá, Paula ; Sahoo, Susmita; Salas‐huenuleo, Edison ; Sánchez, Catherine ; Saugstad, Julie A; Saul, Meike J; Schiffelers, Raymond M; Schneider, Raphael; Schøyen, Tine Hiorth ; Scott, Aaron; Shahaj, Eriomina; Sharma, Shivani; Shatnyeva, Olga; Shekari, Faezeh; Shelke, Ganesh Vilas; Shetty, Ashok K; Shiba, Kiyotaka; Siljander, Pia R‐m ; Silva, Andreia M; Skowronek, Agata; Snyder, Orman L; Soares, Rodrigo Pedro; Sódar, Barbara W ; Soekmadji, Carolina; Sotillo, Javier; Stahl, Philip D; Stoorvogel, Willem; Stott, Shannon L; Strasser, Erwin F; Swift, Simon; Tahara, Hidetoshi; Tewari, Muneesh; Timms, Kate; Tiwari, Swasti; Tixeira, Rochelle; Tkach, Mercedes; Toh, Wei Seong; Tomasini, Richard; Torrecilhas, Ana Claudia; Tosar, Juan Pablo; Toxavidis, Vasilis; Urbanelli, Lorena; Vader, Pieter; Balkom, Bas WM; Grein, Susanne G; Van Deun, Jan; Herwijnen, Martijn JC; Van Keuren‐jensen, Kendall ; Niel, Guillaume; Royen, Martin E; Wijnen, Andre J; Vasconcelos, M Helena; Vechetti, Ivan J; Veit, Tiago D; Vella, Laura J; Velot, Émilie ; Verweij, Frederik J; Vestad, Beate; Viñas, Jose L ; Visnovitz, Tamás ; Vukman, Krisztina V; Wahlgren, Jessica; Watson, Dionysios C; Wauben, Marca HM; Weaver, Alissa; Webber, Jason P; Weber, Viktoria; Wehman, Ann M; Weiss, Daniel J; Welsh, Joshua A; Wendt, Sebastian; Wheelock, Asa M; Wiener, Zoltán ; Witte, Leonie; Wolfram, Joy; Xagorari, Angeliki; Xander, Patricia; Xu, Jing; Yan, Xiaomei; Yáñez‐mó, María ; Yin, Hang; Yuana, Yuana; Zappulli, Valentina; Zarubova, Jana; Žėkas, Vytautas ; Zhang, Jian‐ye ; Zhao, Zezhou; Zheng, Lei; Zheutlin, Alexander R; Zickler, Antje M; Zimmermann, Pascale; Zivkovic, Angela M; Zocco, Davide; Zuba‐surma, Ewa K (2018). "Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines." Journal of Extracellular Vesicles 7(1): n/a-n/a.
dc.identifier.issn2001-3078
dc.identifier.issn2001-3078
dc.identifier.urihttps://hdl.handle.net/2027.42/163594
dc.descriptionFor a complete list of authors, please look at article.en_US
dc.description.abstractThe last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cellâ released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles (â MISEVâ ) guidelines for the field in 2014. We now update these â MISEV2014â guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EVâ associated functional activities. Finally, a checklist is provided with summaries of key points.
dc.publisherTaylor & Francis
dc.publisherWiley Periodicals, Inc.
dc.subject.otherexosomes
dc.subject.otherectosomes
dc.subject.othermicrovesicles
dc.subject.otherminimal information requirements
dc.subject.otherrigor
dc.subject.otherguidelines
dc.subject.othermicroparticles
dc.subject.otherreproducibility
dc.subject.otherstandardization
dc.subject.otherextracellular vesicles
dc.titleMinimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163594/1/jev2bf00336.pdfen_US
dc.identifier.doi10.1080/20013078.2018.1535750
dc.identifier.sourceJournal of Extracellular Vesicles
dc.identifier.citedreferenceRojas A The imperative authentication of cell lines. Antimicrob Agents Chemother. 2017; 61 ( 11 ): e01823 â 17. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.01823â 17
dc.identifier.citedreferenceBosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016; 6 ( 1 ): 36162. Available from: http://www.nature.com/articles/srep36162
dc.identifier.citedreferenceLŠrincz à M, Timár CI, Marosvári KA, et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles. 2014; 3 ( 1 ): 25465. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.25465
dc.identifier.citedreferenceKriebardis AG, Antonelou MH, Georgatzakou HT, et al. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects. Blood Transfus. 2016; 14 ( 2 ): 228 â 237. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27136430
dc.identifier.citedreferenceVilaâ Liante V, Sánchezâ López V, Martínezâ Sales V, et al. Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters. Clin Chem Lab Med. 2016; 54 ( 11 ): 1759 â 1767. Available from: https://www.degruyter.com/view/j/cclm.2016.54.issueâ 11/cclmâ 2016â 0036/cclmâ 2016â 0036.xml
dc.identifier.citedreferenceZhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006; 69 ( 8 ): 1471 â 1476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16501490
dc.identifier.citedreferenceMichaelis ML, Jiang L, Michaelis EK Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes. In: Methods in molecular biology. Clifton, NJ. 2017. p. 107 â 119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27943187
dc.identifier.citedreferenceLeroyer AS, Ebrahimian TG, Cochain C, et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation. 2009; 119 ( 21 ): 2808 â 2817. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.108.816710
dc.identifier.citedreferenceLoyer X, Zlatanova I, Devue C, et al. Intraâ cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018; 123 ( 1 ): 100 â 106. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.311326
dc.identifier.citedreferenceKranendonk MEG, Visseren FLJ, van Balkom BWM, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 2014; 22 ( 5 ): 1296 â 1308.
dc.identifier.citedreferenceWang GJ, Liu Y, Qin A, et al. Thymus exosomesâ like particles induce regulatory T cells. J Immunol. 2008; 181 ( 8 ): 5242 â 5248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18832678
dc.identifier.citedreferenceDeng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosomeâ like vesicles mediate activation of macrophageâ induced insulin resistance. Diabetes. 2009; 58 ( 11 ): 2498 â 2505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19675137
dc.identifier.citedreferenceVella LJ, Scicluna BJ, Cheng L, et al. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017; 6 ( 1 ): 1348885. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28804598
dc.identifier.citedreferencePerezâ Gonzalez R, Gauthier SA, Kumar A, et al. The exosome secretory pathway transports amyloid precursor protein carboxylâ terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012; 287 ( 51 ): 43108 â 43115. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M112.404467
dc.identifier.citedreferenceHolder BS, Tower CL, Forbes K, et al. Immune cell activation by trophoblastâ derived microvesicles is mediated by syncytin 1. Immunology. 2012; 136 ( 2 ): 184 â 191.
dc.identifier.citedreferenceGupta AK, Rusterholz C, Huppertz B, et al. A comparative study of the effect of three different syncytiotrophoblast microâ particles preparations on endothelial cells. Placenta. 2005; 26 ( 1 ): 59 â 66. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0143400404001080
dc.identifier.citedreferenceLunavat TR, Cheng L, Einarsdottir BO, et al. BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A. 2017; 114 ( 29 ): E5930 â 9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1705206114
dc.identifier.citedreferenceMinchevaâ Nilsson L, Baranov V, Nagaeva O, et al. Isolation and characterization of exosomes from cultures of tissue explants and cell lines. Curr Protoc Immunol. 2016; 115: 14.42.1 â 14.42.21.
dc.identifier.citedreferenceHeijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alphaâ granules. Blood. 1999; 94 ( 11 ): 3791 â 3799.
dc.identifier.citedreferenceAyers L, Kohler M, Harrison P, et al. Measurement of circulating cellâ derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011; 127 ( 4 ): 370 â 377. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21257195
dc.identifier.citedreferenceMuller L, Hong Câ S, Stolz DB, et al. Isolation of biologicallyâ active exosomes from human plasma. J Immunol Meth. 2014; 411: 55 â 65.
dc.identifier.citedreferenceCheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013; 8 ( 6 ): e64795. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23762257
dc.identifier.citedreferenceMitchell AJ, Gray WD, Hayek SS, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep. 2016; 6 ( 1 ): 32651. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27623086
dc.identifier.citedreferenceGyörgy B, Pálóczi K, Kovács A, et al. Improved circulating microparticle analysis in acidâ citrate dextrose (ACD) anticoagulant tube. Thromb Res. 2014; 133 ( 2 ): 285 â 292. Available from: http://linkinghub.elsevier.com/retrieve/pii/S004938481300546X
dc.identifier.citedreferenceWisgrill L, Lamm C, Hartmann J, et al. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A. 2016; 89 ( 7 ): 663 â 672.
dc.identifier.citedreferenceFendl B, Weiss R, Fischer MB, et al. Characterization of extracellular vesicles in whole blood: influence of preâ analytical parameters and visualization of vesicleâ cell interactions using imaging flow cytometry. Biochem Biophys Res Commun. 2016; 478 ( 1 ): 168 â 173. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X16311950
dc.identifier.citedreferenceDanielson KM, Estanislau J, Tigges J, et al. Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One. 2016; 11 ( 1 ): e0144678. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26745887
dc.identifier.citedreferenceRobbins PD Extracellular vesicles and aging. Stem Cell Investig. 2017; 4 ( 12 ): 98. Available from: http://sci.amegroups.com/article/view/17758/18069
dc.identifier.citedreferenceYuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015; 4: 29260.
dc.identifier.citedreferenceYuana Y, Bertina RM, Osanto S Preâ analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011; 105 ( 3 ): 396 â 408. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21174005
dc.identifier.citedreferenceCoumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017; 120 ( 10 ): 1632 â 1648. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.309417
dc.identifier.citedreferenceLacroix R, Judicone C, Poncelet P, et al. Impact of preâ analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012; 10 ( 3 ): 437 â 446. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22212198
dc.identifier.citedreferenceMullier F, Bailly N, Chatelain C, et al. Preâ analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23410207
dc.identifier.citedreferenceBarteneva NS, Faslerâ Kan E, Bernimoulin M, et al. Circulating microparticles: square the circle. BMC Cell Biol. 2013; 14 ( 1 ): 23. Available from: http://bmccellbiol.biomedcentral.com/articles/10.1186/1471â 2121â 14â 23
dc.identifier.citedreferenceBæk R, Søndergaard EKL, Varming K, et al. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Meth. 2016; 438: 11 â 20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175916301624
dc.identifier.citedreferenceMateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzàs EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNAâ An ISEV Position Paper. J Extracell Vesicles. 2017; 6: 1286095.
dc.identifier.citedreferenceWitwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research: an ISEV position paper. J Extracell Vesicles. 2013; 2: 20360.
dc.identifier.citedreferenceKaur S, Singh SP, Elkahloun AG, et al. CD47â dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014; 37: 49 â 59. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X14000924
dc.identifier.citedreferenceShelke GV, Lässer C, Gho YS, et al. Importance of exosome depletion protocols to eliminate functional and RNAâ containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014; 3: 24783. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317276
dc.identifier.citedreferenceWei Z, Batagov AO, Carter DRF, et al. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Sci Rep. 2016; 6: 31175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27503761
dc.identifier.citedreferenceKornilov R, Puhka M, Mannerström B, et al. Efficient ultrafiltrationâ based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2018; 7 ( 1 ): 1422674. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1422674
dc.identifier.citedreferencevan Balkom BWM, de Jong OG, Smits M, et al. Endothelial cells require miRâ 214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013; 121 ( 19 ): 3997 â 4006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23532734
dc.identifier.citedreferenceThéry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. In: Current protocols in cell biology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2006. p. Unit 3.22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18228490
dc.identifier.citedreferenceEitan E, Zhang S, Witwer KW, et al. Extracellular vesicleâ depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles. 2015; 4: 26373. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25819213
dc.identifier.citedreferenceBeninson LA, Fleshner M Exosomes in fetal bovine serum dampen primary macrophage ILâ 1β response to lipopolysaccharide (LPS) challenge. Immunol Lett. 2015; 163 ( 2 ): 187 â 192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25455591
dc.identifier.citedreferenceLi J, Lee Y, Johansson HJ, et al. Serumâ free culture alters the quantity and protein composition of neuroblastomaâ derived extracellular vesicles. J Extracell Vesicles. 2015; 4 ( 1 ): 26883. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26883
dc.identifier.citedreferenceSaury C, Lardenois A, Schleder C, et al. Human serum and platelet lysate are appropriate xenoâ free alternatives for clinicalâ grade production of human MuStem cell batches. Stem Cell Res Ther. 2018; 9 ( 1 ): 128. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287â 018â 0852â y
dc.identifier.citedreferencePachler K, Lener T, Streif D, et al. A good manufacturing practiceâ grade standard protocol for exclusively human mesenchymal stromal cellâ derived extracellular vesicles. Cytotherapy. 2017; 19 ( 4 ): 458 â 472. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1465324917300038
dc.identifier.citedreferenceZhou X, Zhang W, Yao Q, et al. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol. 2017; 312 ( 6 ): F963 â 70. Available from: http://www.physiology.org/doi/10.1152/ajprenal.00078.2017
dc.identifier.citedreferenceNémeth A, Orgovan N, Sódar BW, et al. Antibioticâ induced release of small extracellular vesicles (exosomes) with surfaceâ associated DNA. Sci Rep. 2017; 7 ( 1 ): 8202. Available from: http://www.nature.com/articles/s41598â 017â 08392â 1
dc.identifier.citedreferenceRice GE, Scholzâ Romero K, Sweeney E, et al. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab. 2015; 100 ( 10 ): E1280 â 8. Available from: https://academic.oup.com/jcem/articleâ lookup/doi/10.1210/jc.2015â 2270
dc.identifier.citedreferenceThom SR, Bhopale VM, Yu K, et al. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. J Biol Chem. 2017; 292 ( 44 ): 18312 â 18324. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M117.802629
dc.identifier.citedreferenceBurger D, Turner M, Xiao F, et al. High glucose increases the formation and proâ oxidative activity of endothelial microparticles. Diabetologia. 2017; 60 ( 9 ): 1791 â 1800. Available from: http://link.springer.com/10.1007/s00125â 017â 4331â 2
dc.identifier.citedreferenceMathivanan S, Lim JW, Tauro BJ, et al. Proteomics analysis of A33 immunoaffinityâ purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissueâ specific protein signature. Mol Cell Proteomics. 2010; 9 ( 2 ): 197 â 208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19837982
dc.identifier.citedreferenceQuah BJC, O’Neill HC Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J Leukoc Biol. 2007; 82 ( 5 ): 1070 â 1082.
dc.identifier.citedreferenceYang C, Chalasani G, Ng Yâ H, et al. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One. 2012; 7 ( 4 ): e36138. Available from: http://dx.plos.org/10.1371/journal.pone.0036138
dc.identifier.citedreferenceCorralâ Vázquez C, Aguilarâ quesada R, Catalina P, et al. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 2017; 18 ( 2 ): 271 â 280. Available from: http://link.springer.com/10.1007/s10561â 017â 9617â 6
dc.identifier.citedreferenceChernov VM, Mouzykantov AA, Baranova NB, et al. Extracellular membrane vesicles secreted by mycoplasma acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics. 2014; 110: 117 â 128. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1874391914003819
dc.identifier.citedreferenceLázaroâ Ibáñez E, Neuvonen M, Takatalo M, et al. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cellâ derived extracellular vesicles. J Extracell Vesicles. 2017; 6 ( 1 ): 1354645. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1354645
dc.identifier.citedreferenceTosar JP, Cayota A, Eitan E, et al. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J Extracell Vesicles. 2017; 6 ( 1 ): 1272832. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28326168
dc.identifier.citedreferenceSaari H, Lázaroâ Ibáñez E, Viitala T, et al. Microvesicleâ and exosomeâ mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release. 2015; 220 ( PtB ): 727 â 737. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365915301322
dc.identifier.citedreferenceSoekmadji C, Riches JD, Russell PJ, et al. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget. 2017; 8 ( 32 ): 52237 â 52255. Available from: http://www.oncotarget.com/fulltext/11111
dc.identifier.citedreferenceAgouni A, Mostefai HA, Porro C, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J. 2007; 21 ( 11 ): 2735 â 2741. Available from: http://www.fasebj.org/doi/10.1096/fj.07â 8079com
dc.identifier.citedreferenceMostefai HA, Agouni A, Carusio N, et al. Phosphatidylinositol 3â kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol. 2008; 180 ( 7 ): 5028 â 5035. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18354228
dc.identifier.citedreferenceTaylor J, Jaiswal R, Bebawy M Calciumâ calpain dependent pathways regulate vesiculation in malignant breast cells. Curr Cancer Drug Targets. 2017; 17 ( 5 ): 486 â 494. Available from: http://www.eurekaselect.com/node/146745/article
dc.identifier.citedreferenceDozio V, Sanchez Jâ C Characterisation of extracellular vesicleâ subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles. 2017; 6 ( 1 ): 1302705. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1302705
dc.identifier.citedreferenceStratton D, Moore C, Antwiâ Baffour S, et al. Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5bâ 9. Biochem Biophys Res Commun. 2015; 460 ( 3 ): 589 â 595. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X15005203
dc.identifier.citedreferencede Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cellâ derived exosomes. J Extracell Vesicles. 2012; 1 ( 1 ): 18396. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.18396
dc.identifier.citedreferenceMitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015; 213 ( 4Suppl ): S173 â 81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002937815007176
dc.identifier.citedreferenceLowry MC, O’Driscoll L Can hiâ jacking hypoxia inhibit extracellular vesicles in cancer? Drug Discov Today. 2018; 23 ( 6 ): 1267 â 1273. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644617303252
dc.identifier.citedreferenceWatson DC, Yung BC, Bergamaschi C, et al. Scalable, cGMPâ compatible purification of extracellular vesicles carrying bioactive human heterodimeric ILâ 15/lactadherin complexes. J Extracell Vesicles. 2018; 7 ( 1 ): 1442088. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29535850
dc.identifier.citedreferenceYan IK, Shukla N, Borrelli DA, et al. Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol. 2018; 1740: 35 â 41. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7652â 2_4
dc.identifier.citedreferenceTauro BJ, Greening DW, Mathias RA, et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cellâ derived organoids. Mol Cell Proteomics. 2013; 12 ( 3 ): 587 â 598. Available from: http://www.mcponline.org/lookup/doi/10.1074/mcp.M112.021303
dc.identifier.citedreferencevan Niel G, Raposo G, Candalh C, et al. Intestinal epithelial cells secrete exosomeâ like vesicles. Gastroenterology. 2001; 121 ( 2 ): 337 â 349. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11487543
dc.identifier.citedreferenceMittelbrunn M, Vicenteâ Manzanares M, Sánchezâ Madrid F Organizing polarized delivery of exosomes at synapses. Traffic. 2015; 16 ( 4 ): 327 â 337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25614958
dc.identifier.citedreferenceKlingeborn M, Dismuke WM, Skiba NP, et al. Directional exosome proteomes reflect polarityâ specific functions in retinal pigmented epithelium monolayers. Sci Rep. 2017; 7 ( 1 ): 4901. Available from: http://www.nature.com/articles/s41598â 017â 05102â 9
dc.identifier.citedreferenceDang VD, Jella KK, Ragheb RRT, et al. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J. 2017; 31 ( 12 ): 5399 â 5408. Available from: http://www.fasebj.org/doi/10.1096/fj.201700417R
dc.identifier.citedreferencePatel DB, Gray KM, Santharam Y, et al. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cellâ derived extracellular vesicles. Bioeng Transl Med. 2017; 2 ( 2 ): 170 â 179.
dc.identifier.citedreferenceTakasugi M Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 2018; 17 ( 2 ): e12734.
dc.identifier.citedreferenceRoseblade A, Luk F, Ung A, et al. Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance. Curr Cancer Drug Targets. 2015; 15 ( 3 ): 205 â 214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25714701
dc.identifier.citedreferenceFrey B, Gaipl US The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol. 2011; 33 ( 5 ): 497 â 516. Available from: http://link.springer.com/10.1007/s00281â 010â 0228â 6
dc.identifier.citedreferenceLima LG, Chammas R, Monteiro RQ, et al. Tumorâ derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserineâ dependent manner. Cancer Lett. 2009; 283 ( 2 ): 168 â 175. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304383509002420
dc.identifier.citedreferenceChen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESCâ derived MSCs. J Transl Med. 2011; 9 ( 1 ): 47. Available from: http://translationalâ medicine.biomedcentral.com/articles/10.1186/1479â 5876â 9â 47
dc.identifier.citedreferenceReferences, especially those provided to illustrate methods and approaches, are representative only, and are not meant to be a comprehensive review of the literature. Most references were derived from suggestions provided in the MISEV2018 Survey results. Each reference was checked by multiple authors. Citation implies deemed relevance of scientific content and not an endorsement by the authors or ISEV of any particular journal or editorial practice.
dc.identifier.citedreferenceLotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014; 3: 26913. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25536934
dc.identifier.citedreferenceWitwer KW, Soekmadji C, Hill AF, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017; 6 ( 1 ): 1396823. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1396823
dc.identifier.citedreferenceStein JM, Luzio JP Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasmaâ membrane proteins and lipids into shed vesicles. Biochem J. 1991; 274 (Pt 2): 381 â 43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1848755
dc.identifier.citedreferenceCocucci E, Meldolesi J Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015; 25 ( 6 ): 364 â 372. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25683921
dc.identifier.citedreferenceGould SJ, Raposo G As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013; 2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009890
dc.identifier.citedreferenceGardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016; 5: 32945. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27802845
dc.identifier.citedreferenceReid Y, Storts D, Riss T, et al. Authentication of human cell lines by STR DNA profiling analysis [Internet]. Assay Guidance Manual. 2004. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805434
dc.identifier.citedreferenceSubramanian SL, Kitchen RR, Alexander R, et al. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and linked data technologies. J Extracell Vesicles. 2015; 4: 27497. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26320941
dc.identifier.citedreferenceMathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009; 9 ( 21 ): 4997 â 5000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19810033
dc.identifier.citedreferenceKalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012; 10 ( 12 ): e1001450.
dc.identifier.citedreferenceKim Dâ K, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015; 31 ( 6 ): 933 â 939. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388151
dc.identifier.citedreferenceKim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of highâ throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013; 2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009897
dc.identifier.citedreferencePeinado H, AleÄ koviÄ M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a proâ metastatic phenotype through MET. Nat Med. 2012; 18 ( 6 ): 883 â 891. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22635005
dc.identifier.citedreferenceBobrie A, Colombo M, Krumeich S, et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 2012; 1: 18297.
dc.identifier.citedreferenceMenck K, Sönmezer C, Worst TS, et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles. 2017; 6 ( 1 ): 1378056. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1378056
dc.identifier.citedreferenceHoang TQ, Rampon C, Freyssinet Jâ M, et al. A method to assess the migration properties of cellâ derived microparticles within a living tissue. Biochim Biophys Acta. 2011; 1810 ( 9 ): 863 â 866. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416511001061
dc.identifier.citedreferenceBooth AM, Fang Y, Fallon JK, et al. Exosomes and HIV Gag bud from endosomeâ like domains of the T cell plasma membrane. J Cell Biol. 2006; 172 ( 6 ): 923 â 935. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533950
dc.identifier.citedreferenceRomancino DP, Paterniti G, Campos Y, et al. Identification and characterization of the nanoâ sized vesicles released by muscle cells. FEBS Lett. 2013; 587 ( 9 ): 1379 â 1384.
dc.identifier.citedreferenceColombo M, Raposo G, Théry C Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014; 30 ( 1 ): 255 â 289. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25288114
dc.identifier.citedreferenceSchwechheimer C, Kuehn MJ. Outerâ membrane vesicles from Gramâ negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015; 13 ( 10 ): 605 â 619. Available from: http://www.nature.com/articles/nrmicro3525
dc.identifier.citedreferenceDi Vizio D, Kim J, Hager MH, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009; 69 ( 13 ): 5601 â 5609. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008â 5472.CANâ 08â 3860
dc.identifier.citedreferenceYu X, Xu J, Liu W, et al. Bubbles induce endothelial microparticle formation via a calciumâ dependent pathway involving flippase inactivation and rho kinase activation. Cell Physiol Biochem. 2018; 46 ( 3 ): 965 â 974. Available from: https://www.karger.com/Article/FullText/488825
dc.identifier.citedreferenceGao C, Li R, Liu Y, et al. Rhoâ kinaseâ dependent Fâ actin rearrangement is involved in the release of endothelial microparticles during IFNâ αâ induced endothelial cell apoptosis. J Trauma Acute Care Surg. 2012; 73 ( 5 ): 1152 â 1160. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01586154â 201211000â 00017
dc.identifier.citedreferenceBurger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol. 2011; 31 ( 8 ): 1898 â 1907. Available from: http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.110.222703
dc.identifier.citedreferenceMuralidharanâ Chari V, Clancy J, Plou C, et al. ARF6â regulated shedding of tumor cellâ derived plasma membrane microvesicles. Curr Biol. 2009; 19 ( 22 ): 1875 â 1885. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960982209017722
dc.identifier.citedreferenceNabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domainâ containing protein 1â mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012; 109 ( 11 ): 4146 â 4151. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1200448109
dc.identifier.citedreferenceWang Q, Lu Q Plasma membraneâ derived extracellular microvesicles mediate nonâ canonical intercellular NOTCH signaling. Nat Commun. 2017; 8 ( 1 ): 709. Available from: http://www.nature.com/articles/s41467â 017â 00767â 2
dc.identifier.citedreferenceEdgar JR, Manna PT, Nishimura S, et al. Tetherin is an exosomal tether. Elife. 2016; 5: 17180. Available from: https://elifesciences.org/articles/17180
dc.identifier.citedreferenceMinakaki G, Menges S, Kittel A, et al. Autophagy inhibition promotes SNCA/alphaâ synuclein release and transfer via extracellular vesicles with a hybrid autophagosomeâ exosomeâ like phenotype. Autophagy. 2018; 14 ( 1 ): 98 â 119. Available from: https://www.tandfonline.com/doi/full/10.1080/15548627.2017.1395992
dc.identifier.citedreferenceSavina A, Furlán M, Vidal M, et al. Exosome release is regulated by a calciumâ dependent mechanism in K562 cells. J Biol Chem. 2003; 278 ( 22 ): 20083 â 20090. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M301642200
dc.identifier.citedreferenceMontecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012; 119 ( 3 ): 756 â 766. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22031862
dc.identifier.citedreferenceChalmin F, Ladoire S, Mignot G, et al. Membraneâ associated Hsp72 from tumorâ derived exosomes mediates STAT3â dependent immunosuppressive function of mouse and human myeloidâ derived suppressor cells. J Clin Invest. 2010; 120 ( 2 ): 457 â 471. Available from: http://www.jci.org/articles/view/40483
dc.identifier.citedreferenceJackson CE, Scruggs BS, Schaffer JE, et al. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J. 2017; 113 ( 6 ): 1342 â 1352. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006349517305714
dc.identifier.citedreferenceSinha S, Hoshino D, Hong NH, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016; 214 ( 2 ): 197 â 213. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201601025
dc.identifier.citedreferenceImjeti NS, Menck K, Egeaâ Jimenez AL, et al. Syntenin mediates SRC function in exosomal cellâ toâ cell communication. Proc Natl Acad Sci U S A. 2017; 114 ( 47 ): 12495 â 12500. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1713433114
dc.identifier.citedreferenceGross JC, Chaudhary V, Bartscherer K, et al. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012; 14 ( 10 ): 1036 â 1045. Available from: http://www.nature.com/articles/ncb2574
dc.identifier.citedreferenceHyenne V, Apaydin A, Rodriguez D, et al. RALâ 1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015; 211 ( 1 ): 27 â 37. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201504136
dc.identifier.citedreferenceHsu C, Morohashi Y, Yoshimura Sâ I, et al. Regulation of exosome secretion by Rab35 and its GTPaseâ activating proteins TBC1D10Aâ C. J Cell Biol. 2010; 189 ( 2 ): 223 â 232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404108
dc.identifier.citedreferenceOstrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010; 12 ( 1 ): 13 â 19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19966785
dc.identifier.citedreferenceSavina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci. 2002; 115 ( Pt 12 ): 2505 â 2515. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12045221
dc.identifier.citedreferenceVillarroyaâ Beltri C, Baixauli F, Mittelbrunn M, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016; 7: 13588. Available from: http://www.nature.com/doifinder/10.1038/ncomms13588
dc.identifier.citedreferenceCruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrowâ derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extractâ induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015; 4 ( 11 ): 1302 â 1316.
dc.identifier.citedreferenceDinkins MB, Enasko J, Hernandez C, et al. Neutral sphingomyelinaseâ 2 deficiency ameliorates alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J Neurosci. 2016; 36 ( 33 ): 8653 â 8667. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1429â 16.2016
dc.identifier.citedreferenceFigueraâ Losada M, Stathis M, Dorskind JM, et al. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One. 2015; 10 ( 5 ): e0124481. Available from: http://dx.plos.org/10.1371/journal.pone.0124481
dc.identifier.citedreferenceTrajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008; 319 ( 5867 ): 1244 â 1247. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124
dc.identifier.citedreferenceBenedikter BJ, Bouwman FG, Vajen T, et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep. 2017; 7 ( 1 ): 15297. Available from: http://www.nature.com/articles/s41598â 017â 15717â 7
dc.identifier.citedreferenceGyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cellâ derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011; 117 ( 4 ): e39 â 48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21041717
dc.identifier.citedreferencePaolini L, Zendrini A, Di Noto G, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016; 6 ( 1 ): 23550. Available from: http://www.nature.com/articles/srep23550
dc.identifier.citedreferenceGámezâ Valero A, Monguióâ Tortajada M, Carrerasâ Planella L, et al. Sizeâ exclusion chromatographyâ based isolation minimally alters extracellular vesiclesâ characteristics compared to precipitating agents. Sci Rep. 2016; 6 ( 1 ): 33641. Available from: http://www.nature.com/articles/srep33641
dc.identifier.citedreferenceAtai NA, Balaj L, van Veen H, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24002181
dc.identifier.citedreferenceSzabó GT, Tarr B, Pálóczi K, et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci. 2014; 71 ( 20 ): 4055 â 4067. Available from: http://link.springer.com/10.1007/s00018â 014â 1618â z
dc.identifier.citedreferenceWahlgren J, Karlson TDL, Glader P, et al. Activated human T cells secrete exosomes that participate in ILâ 2 mediated immune response signaling. PLoS One. 2012; 7 ( 11 ): e49723. Available from: http://dx.plos.org/10.1371/journal.pone.0049723
dc.identifier.citedreferenceMulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014; 3: 24641. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.24641
dc.identifier.citedreferenceChristianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cellâ surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013; 110 ( 43 ): 17380 â 17385. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1304266110
dc.identifier.citedreferenceFranzen CA, Simms PE, Van Huis AF, et al. Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed Res Int. 2014; 2014: 619829. Available from: http://www.hindawi.com/journals/bmri/2014/619829/
dc.identifier.citedreferenceParolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009; 284 ( 49 ): 34211 â 34222. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M109.041152
dc.identifier.citedreferenceOsteikoetxea X, Sódar B, Németh A, et al. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015; 13 ( 38 ): 9775 â 9782. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26264754
dc.identifier.citedreferenceSung BH, Weaver AM. Exosome secretion promotes chemotaxis of cancer cells. Cell Adh Migr. 2017; 11 ( 2 ): 187 â 195. Available from: https://www.tandfonline.com/doi/full/10.1080/19336918.2016.1273307
dc.identifier.citedreferenceSharma A, Mariappan M, Appathurai S, et al. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol Biol. 2010; 619: 339 â 363. Available from: http://link.springer.com/10.1007/978â 1â 60327â 412â 8_20
dc.identifier.citedreferenceDeregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007; 110 ( 7 ): 2440 â 2448. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/bloodâ 2007â 03â 078709
dc.identifier.citedreferenceCvjetkovic A, Jang SC, KoneÄ ná B, et al. Detailed analysis of protein topology of extracellular vesiclesâ evidence of unconventional membrane protein orientation. Sci Rep. 2016; 6 ( 1 ): 36338. Available from: http://www.nature.com/articles/srep36338
dc.identifier.citedreferencevan der Pol E, Sturk A, van Leeuwen T, et al., ISTHâ SSCâ VB Working group. Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost. 2018; 16 ( 6 ): 1236 â 1245.
dc.identifier.citedreferenceDaaboul GG, Freedman DS, Scherr SM, et al. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLoS One. 2017; 12 ( 6 ): e0179728.
dc.identifier.citedreferenceDaaboul GG, Lopez CA, Yurt A, et al. Labelâ free optical biosensors for virus detection and characterization. IEEE J Sel Top Quantum Electron. 2012; 18 ( 4 ): 1422 â 1433.
dc.identifier.citedreferenceLee K, Fraser K, Ghaddar B, et al. Multiplexed profiling of single extracellular vesicles. ACS Nano. 2018; 12 ( 1 ): 494 â 503. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07060
dc.identifier.citedreferenceHeadland SE, Jones HR, Asv D, et al. Cuttingâ edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep. 2014; 4 ( 1 ): 5237. Available from: http://www.nature.com/articles/srep05237
dc.identifier.citedreferenceErdbrügger U, Rudy CK, Etter ME, et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A. 2014; 85 ( 9 ): 756 â 770.
dc.identifier.citedreferenceBaietti MF, Zhang Z, Mortier E, et al. Syndecanâ synteninâ ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012; 14 ( 7 ): 677 â 685.
dc.identifier.citedreferenceWyss R, Grasso L, Wolf C, et al. Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy. Anal Chem. 2014; 86 ( 15 ): 7229 â 7233. Available from: http://pubs.acs.org/doi/10.1021/ac501801m
dc.identifier.citedreferenceHeusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol. 2016; 213 ( 2 ): 173 â 184. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27114500
dc.identifier.citedreferenceSitar S, Kejžar A, Pahovnik D, et al. Size characterization and quantification of exosomes by asymmetricalâ flow fieldâ flow fractionation. Anal Chem. 2015; 87 ( 18 ): 9225 â 9233. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b01636
dc.identifier.citedreferenceNolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017; 28 ( 3 ): 256 â 262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28277059
dc.identifier.citedreferenceStoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytom Part A. 2016; 89 ( 2 ): 196 â 206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26484737
dc.identifier.citedreferenceSmith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015; 4 ( 1 ): 28533. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.28533
dc.identifier.citedreferenceCarney RP, Hazari S, Colquhoun M, et al. Multispectral optical tweezers for biochemical fingerprinting of CD9â positive exosome subpopulations. Anal Chem. 2017; 89 ( 10 ): 5357 â 5363. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b00017
dc.identifier.citedreferenceTatischeff I, Larquet E, Falcónâ Pérez JM, et al. Fast characterisation of cellâ derived extracellular vesicles by nanoparticles tracking analysis, cryoâ electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. 2012; 1 ( 1 ): 19179. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.19179
dc.identifier.citedreferenceMehdiani A, Maier A, Pinto A, et al. An innovative method for exosome quantification and size measurement. J Vis Exp. 2015; 95: 50974. Available from: http://www.jove.com/video/50974/anâ innovativeâ methodâ forâ exosomeâ quantificationâ andâ sizeâ measurement
dc.identifier.citedreferenceChen C, Zong S, Wang Z, et al. Imaging and intracellular tracking of cancerâ derived exosomes using singleâ molecule localizationâ based superâ resolution microscope. ACS Appl Mater Interfaces. 2016; 8 ( 39 ): 25825 â 25833. Available from: http://pubs.acs.org/doi/10.1021/acsami.6b09442
dc.identifier.citedreferenceTreps L, Perret R, Edmond S, et al. Glioblastoma stemâ like cells secrete the proâ angiogenic VEGFâ A factor in extracellular vesicles. J Extracell Vesicles. 2017; 6 ( 1 ): 1359479. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359479
dc.identifier.citedreferenceSharma S, Rasool HI, Palanisamy V, et al. Structuralâ mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010; 4 ( 4 ): 1921 â 1926. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20218655
dc.identifier.citedreferenceHöög JL, Lötvall J Diversity of extracellular vesicles in human ejaculates revealed by cryoâ electron microscopy. J Extracell Vesicles. 2015; 4: 28680. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26563734
dc.identifier.citedreferenceLinares R, Tan S, Gounou C, et al. Highâ speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 2015; 4 ( 0 ): 29509. Available from: http://www.journalofextracellularvesicles.net/index.php/jev/article/view/29509
dc.identifier.citedreferenceWu Y, Deng W, Klinke DJ. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015; 140 ( 19 ): 6631 â 6642. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26332016
dc.identifier.citedreferenceTerâ Ovanesyan D, Kowal EJK, Regev A, et al. Imaging of isolated extracellular vesicles using fluorescence microscopy. Methods Mol Biol. 2017; 1660: 233 â 241. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7253â 1_19
dc.identifier.citedreferenceLai CP, Kim EY, Badr CE., et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015; 6 ( May ): 7029.
dc.identifier.citedreferenceChen M, Xu R, Ji H, et al. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep. 2016; 6 ( 1 ): 38397. Available from: http://www.nature.com/articles/srep38397
dc.identifier.citedreferenceLi K, Rodosthenous RS, Kashanchi F, et al. Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA strategic workshop. JCI Insight. 2018; 3 ( 7 ). Available from: https://insight.jci.org/articles/view/98942
dc.identifier.citedreferencevan Balkom BWM, Eisele AS, Pegtel DM, et al. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015; 4 ( 1 ): 26760. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26760
dc.identifier.citedreferenceTosar JP, Gambaro F, Sanguinetti J, et al. Assessment of small RNA sorting into different extracellular fractions revealed by highâ throughput sequencing of breast cell lines. Nucleic Acids Res. 2015; 43 ( 11 ): 5601 â 5616. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25940616
dc.identifier.citedreferenceVojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small nonâ coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014; 42 ( 11 ): 7290 â 7304. Available from: https://academic.oup.com/nar/articleâ lookup/doi/10.1093/nar/gku347
dc.identifier.citedreferenceVillarroyaâ Beltri C, Gutierrezâ Vazquez C, Sanchezâ Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013; 4: 2980. [2013/12/21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24356509
dc.identifier.citedreferenceNolteâ ’t Hoen EN, Buermans HP, Waasdorp M, et al. Deep sequencing of RNA from immune cellâ derived vesicles uncovers the selective incorporation of small nonâ coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22821563
dc.identifier.citedreferenceCrescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013; 2 ( 1 ): 20677. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24223256
dc.identifier.citedreferenceSansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapyâ resistant breast cancer. Proc Natl Acad Sci U S A. 2017; 114 ( 43 ): E9066 â 75. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1704862114
dc.identifier.citedreferenceUllal AJ, Pisetsky DS, Reich CF. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A. 2010; 77 ( 3 ): 294 â 301.
dc.identifier.citedreferencede Rond L, van der Pol E, Hau CM, et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin Chem. 2018; 64 ( 4 ): 680 â 689. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2017.278978
dc.identifier.citedreferenceNeri T, Lombardi S, Faìta F, et al. Pirfenidone inhibits p38â mediated generation of procoagulant microparticles by human alveolar epithelial cells. Pulm Pharmacol Ther. 2016; 39: 1 â 6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27237042
dc.identifier.citedreferenceGualerzi A, Niada S, Giannasi C, et al. Raman spectroscopy uncovers biochemical tissueâ related features of extracellular vesicles from mesenchymal stromal cells. Sci Rep. 2017; 7 ( 1 ): 9820. Available from: http://www.nature.com/articles/s41598â 017â 10448â 1
dc.identifier.citedreferencede Gassart A, Geminard C, Fevrier B, et al. Lipid raftâ associated protein sorting in exosomes. Blood. 2003; 102 ( 13 ): 4336 â 4344. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12881314
dc.identifier.citedreferenceNielsen MH, Beckâ Nielsen H, Andersen MN, et al. A flow cytometric method for characterization of circulating cellâ derived microparticles in plasma. J Extracell Vesicles. 2014; 3 ( 1 ): 20795. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.20795
dc.identifier.citedreferenceRecord M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cellâ cell communication and various pathophysiologies. Biochim Biophys Acta. 2014; 1841 ( 1 ): 108 â 120. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1388198113002199
dc.identifier.citedreferenceSkotland T, Sandvig K, Llorente A Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017; 66: 30 â 41. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0163782716300492
dc.identifier.citedreferenceShao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018; 118 ( 4 ): 1917 â 1950. Available from: http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00534
dc.identifier.citedreferenceZhu L, Wang K, Cui J, et al. Labelâ free quantitative detection of tumorâ derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014; 86 ( 17 ): 8857 â 8864. Available from: http://pubs.acs.org/doi/10.1021/ac5023056
dc.identifier.citedreferenceGool EL, Stojanovic I, Schasfoort RBM, et al. Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin Chem. 2017; 63 ( 10 ): 1633 â 1641. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2016.271049
dc.identifier.citedreferenceJorgensen MM, Baek R, Varming K Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015; 4: 26048. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25862471
dc.identifier.citedreferenceTkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in Tâ cell activation by dendritic cellâ derived extracellular vesicle subtypes. Embo J. 2017; 36 ( 20 ): 3012 â 3028. Available from: http://emboj.embopress.org/lookup/doi/10.15252/embj.201696003
dc.identifier.citedreferenceBuck AH, Coakley G, Simbari F, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014; 5 ( 1 ): 5488. Available from: http://www.nature.com/articles/ncomms6488
dc.identifier.citedreferenceMelo SAA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cellâ independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014; 26 ( 5 ): 707 â 721. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25446899
dc.identifier.citedreferenceMcKenzie AJ, Hoshino D, Hong NH, et al. KRASâ MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016; 15 ( 5 ): 978 â 987. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27117408
dc.identifier.citedreferenceVan Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014; 3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317274
dc.identifier.citedreferenceMusante L, Saraswat M, Duriez E, et al. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS One. 2012; 7 ( 7 ): e37279. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22808001
dc.identifier.citedreferenceà stergaard O, Nielsen CT, Iversen LV, et al. Quantitative proteome profiling of normal human circulating microparticles. J Proteome Res. 2012; 11 ( 4 ): 2154 â 2163. Available from: http://pubs.acs.org/doi/10.1021/pr200901p
dc.identifier.citedreferenceKarimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018; 75 ( 15 ): 2873 â 2886. Available from: http://link.springer.com/10.1007/s00018â 018â 2773â 4
dc.identifier.citedreferenceSódar BW, Kittel à , Pálóczi K, et al. Lowâ density lipoprotein mimics blood plasmaâ derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016; 6: 24316. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27087061
dc.identifier.citedreferenceMeehan B, Rak J, Di Vizio D Oncosomes â large and small: what are they, where they came from? J Extracell Vesicles. 2016; 5: 33109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27680302
dc.identifier.citedreferenceWillms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016; 6 ( 1 ): 22519. Available from: http://www.nature.com/articles/srep22519
dc.identifier.citedreferenceXu R, Greening DW, Rai A, et al. Highlyâ purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods. 2015; 87: 11 â 25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1046202315001541
dc.identifier.citedreferenceKowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci. 2016; 113 ( 8 ): E968 â 77. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1521230113
dc.identifier.citedreferenceDurcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyteâ derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 2017; 6 ( 1 ): 1305677. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1305677
dc.identifier.citedreferenceClark DJ, Fondrie WE, Liao Z, et al. Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem. 2015; 87 ( 20 ): 10462 â 10469. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b02586
dc.identifier.citedreferenceHaraszti RA, Didiot Mâ C, Sapp E, et al. Highâ resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016; 5 ( 1 ): 32570. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.32570
dc.identifier.citedreferenceKeerthikumar S, Gangoda L, Liem M, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015; 6 ( 17 ): 15375 â 15396. Available from: http://www.oncotarget.com/fulltext/3801
dc.identifier.citedreferenceMinciacchi VR, You S, Spinelli C, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumorâ derived extracellular vesicles. Oncotarget. 2015; 6 ( 13 ): 11327 â 11341. Available from: http://www.oncotarget.com/fulltext/3598
dc.identifier.citedreferenceValkonen S, van der Pol E, Böing A, et al. Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci. 2017; 98: 4 â 16. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0928098716303578
dc.identifier.citedreferenceCvjetkovic A, Lotvall J, Lasser C The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014; 3: 23111. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24678386
dc.identifier.citedreferenceLai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010; 4 ( 3 ): 214 â 222.
dc.identifier.citedreferenceMaiolo D, Paolini L, Di Noto G, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015; 87 ( 8 ): 4168 â 4176. Available from: http://pubs.acs.org/doi/abs/10.1021/ac504861d
dc.identifier.citedreferenceWebber J, Clayton A How pure are your vesicles? J Extracell Vesicles. 2013; 2: 19861. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009896
dc.identifier.citedreferenceRupert DLM, Lässer C, Eldh M, et al. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem. 2014; 86 ( 12 ): 5929 â 5936. Available from: http://pubs.acs.org/doi/10.1021/ac500931f
dc.identifier.citedreferenceLiang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumorâ derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng. 2017; 1 ( 4 ): 0021. Available from: http://www.nature.com/articles/s41551â 016â 0021
dc.identifier.citedreferenceXia Y, Liu M, Wang L, et al. A visible and colorimetric aptasensor based on DNAâ capped singleâ walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017; 92: 8 â 15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0956566317300635
dc.identifier.citedreferenceKoliha N, Wiencek Y, Heider U, et al. A novel multiplex beadâ based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016; 5: 29975. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26901056
dc.identifier.citedreferenceSuárez H, Gámezâ Valero A, Reyes R, et al. A beadâ assisted flow cytometry method for the semiâ quantitative analysis of extracellular vesicles. Sci Rep. 2017; 7 ( 1 ): 11271. Available from: http://www.nature.com/articles/s41598â 017â 11249â 2
dc.identifier.citedreferenceDuijvesz D, Versluis CYL, van der Fels CAM, et al. Immunoâ based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int J Cancer. 2015; 137 ( 12 ): 2869 â 2878.
dc.identifier.citedreferenceVickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by highâ density lipoproteins. Nat Cell Biol. 2011; 13 ( 4 ): 423 â 433. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21423178
dc.identifier.citedreferenceArroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011; 108 ( 12 ): 5003 â 5008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21383194
dc.identifier.citedreferenceTurchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39 ( 16 ): 7223 â 7233. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21609964
dc.identifier.citedreferenceMihály J, Deák R, Szigyártó IC, et al. Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations. Biochim Biophys Acta. 2017; 1859 ( 3 ): 459 â 466. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000527361630390X
dc.identifier.citedreferenceBenmoussa A, Ly S, Shan ST, et al. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J Extracell Vesicles. 2017; 6 ( 1 ): 1401897. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1401897
dc.identifier.citedreferenceOsteikoetxea X, Balogh A, Szabóâ Taylor K, et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One. 2015; 10 ( 3 ): e0121184. Available from: http://dx.plos.org/10.1371/journal.pone.0121184
dc.identifier.citedreferenceGardiner C, Ferreira YJ, Dragovic RA, et al. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013; 2: 19671. Available from:
dc.identifier.citedreferenceDragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011; 7 ( 6 ): 780 â 788. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21601655
dc.identifier.citedreferencevan der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014; 12 ( 7 ): 1182 â 1192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24818656
dc.identifier.citedreferenceTakov K, Yellon DM, Davidson SM Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles. 2017; 6 ( 1 ): 1388731. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29184625
dc.identifier.citedreferenceCarnellâ Morris P, Tannetta D, Siupa A, et al. Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol Biol. 2017; 1660: 153 â 173. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7253â 1_13
dc.identifier.citedreferencevan der Pol E, Hoekstra AG, Sturk A, et al. Optical and nonâ optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010; 8 ( 12 ): 2596 â 2607. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20880256
dc.identifier.citedreferenceLibregts SFWM, Arkesteijn GJA, Németh A, et al. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of nonâ interest. J Thromb Haemost. 2018; 16 ( 7 ): 1423 â 1436.
dc.identifier.citedreferenceObeid S, Ceroi A, Mourey G, et al. Development of a NanoBioAnalytical platform for onâ chip qualification and quantification of plateletâ derived microparticles. Biosens Bioelectron. 2017; 93: 250 â 259. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956566316308569
dc.identifier.citedreferencede Vrij J, Maas SL, van Nispen M, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (Lond). 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23384702
dc.identifier.citedreferenceMaas SLN, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015; 200: 87 â 96. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365914008384
dc.identifier.citedreferenceArraud N, Gounou C, Linares R, et al. A simple flow cytometry method improves the detection of phosphatidylserineâ exposing extracellular vesicles. J Thromb Haemost. 2015; 13 ( 2 ): 237 â 247.
dc.identifier.citedreferenceArraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014; 12 ( 5 ): 614 â 627.
dc.identifier.citedreferenceNolan JP, Stoner SA. A trigger channel threshold artifact in nanoparticle analysis. Cytometry A. 2013; 83 ( 3 ): 301 â 305.
dc.identifier.citedreferenceMcVey MJ, Spring CM, Kuebler WM. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter. J Extracell Vesicles. 2018; 7 ( 1 ): 1454776. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1454776
dc.identifier.citedreferenceTian Y, Ma L, Gong M, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano. 2018; 12 ( 1 ): 671 â 680. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07782
dc.identifier.citedreferencePospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015; 4 ( 1 ): 25530. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.25530
dc.identifier.citedreferencevan der Pol E, van Gemert MJ, Sturk A, et al. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012/03/08. 2012; 10 ( 5 ): 919 â 930. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22394434
dc.identifier.citedreferencevan der Vlist EJ, Nolteâ ’T Hoen EN, Stoorvogel W, et al. Fluorescent labeling of nanoâ sized vesicles released by cells and subsequent quantitative and qualitative analysis by highâ resolution flow cytometry. Nat Protoc. 2012/06/23. 2012; 7 ( 7 ): 1311 â 1326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22722367
dc.identifier.citedreferenceAtkinâ Smith GK, Tixeira R, Paone S, et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beadsâ onâ aâ string membrane structure. Nat Commun. 2015; 6: 7439. Available from: http://www.nature.com/doifinder/10.1038/ncomms8439
dc.identifier.citedreferenceMcVey MJ, Spring CM, Semple JW, et al. Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres. Am J Physiol Lung Cell Mol Physiol. 2016; 310 ( 9 ): L802 â 14. Available from: http://www.physiology.org/doi/10.1152/ajplung.00369.2015
dc.identifier.citedreferenceKrishnan SR, Luk F, Brown RD, et al. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016; 18 ( 1 ): 25 â 32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1476558615001566
dc.identifier.citedreferenceCointe S, Judicone C, Robert S, et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost. 2017; 15 ( 1 ): 187 â 193.
dc.identifier.citedreferenceOrtiz A, Sanchezâ Niño MD, Sanz AB The meaning of urinary creatinine concentration. Kidney Int. 2011; 79 ( 7 ): 791. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0085253815548849
dc.identifier.citedreferenceMitchell JP, Court J, Mason MD, et al. Increased exosome production from tumour cell cultures using the integra celline culture system. J Immunol Meth. 2008; 335 ( 1â 2 ): 98 â 105. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175908000926
dc.identifier.citedreferenceVan Deun J, Mestdagh P, Agostinis P, et al. EVâ TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017; 14 ( 3 ): 228 â 232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28245209
dc.identifier.citedreferenceLi K, Wong DK, Hong KY, et al. Cushionedâ density gradient ultracentrifugation (Câ DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol Biol. 2018; 1740: 69 â 83. Available from: http://link.springer.com/10.1007/978â 1â 4939â 7652â 2_7
dc.identifier.citedreferenceJang SC, Kim OY, Yoon CM, et al. Bioinspired exosomeâ mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013; 7 ( 9 ): 7698 â 7710. Available from: http://pubs.acs.org/doi/10.1021/nn402232g
dc.identifier.citedreferenceLivshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015; 5 ( 1 ): 17319. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26616523
dc.identifier.citedreferenceJeppesen DK, Hvam ML, Primdahlâ Bengtson B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014; 3: 25011. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25396408
dc.identifier.citedreferenceEnderle D, Spiel A, Coticchia CM, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin columnâ based method. PLoS One. 2015; 10 ( 8 ): e0136133. Available from: http://dx.plos.org/10.1371/journal.pone.0136133
dc.identifier.citedreferenceStranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinityâ based method with sizeâ exclusion chromatography for isolation of exosomeâ like vesicles from human plasma. J Transl Med. 2018; 16 ( 1 ): 1. Available from: https://translationalâ medicine.biomedcentral.com/articles/10.1186/s12967â 017â 1374â 6
dc.identifier.citedreferenceBöing AN, van der Pol E, Grootemaat AE, et al. Singleâ step isolation of extracellular vesicles by sizeâ exclusion chromatography. J Extracell Vesicles. 2014; 3: 23430. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.23430
dc.identifier.citedreferenceReátegui E, van der Vos KE, Lai CP, et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumorâ specific extracellular vesicles. Nat Commun. 2018; 9 ( 1 ): 175. Available from: http://www.nature.com/articles/s41467â 017â 02261â 1
dc.identifier.citedreferenceWang Z, Wu H, Fine D, et al. Ciliated micropillars for the microfluidicâ based isolation of nanoscale lipid vesicles. Lab Chip. 2013; 13 ( 15 ): 2879 â 2882.
dc.identifier.citedreferenceZhao Z, Yang Y, Zeng Y, et al. A microfluidic exosearch chip for multiplexed exosome detection towards bloodâ based ovarian cancer diagnosis. Lab Chip. 2016; 16 ( 3 ): 489 â 496.
dc.identifier.citedreferenceYasui T, Yanagida T, Ito S, et al. Unveiling massive numbers of cancerâ related urinaryâ microRNA candidates via nanowires. Sci Adv. 2017; 3 ( 12 ): e1701133. Available from: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1701133
dc.identifier.citedreferenceShin S, Han D, Park MC, et al. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci Rep. 2017; 7 ( 1 ): 9907. Available from: http://www.nature.com/articles/s41598â 017â 08826â w
dc.identifier.citedreferenceLiang Lâ G, Kong Mâ Q, Zhou S, et al. An integrated doubleâ filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep. 2017; 7: 46224. Available from: http://www.nature.com/articles/srep46224
dc.identifier.citedreferenceChen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010/02/04. 2010; 10 ( 4 ): 505 â 511.
dc.identifier.citedreferenceWu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017; 114 ( 40 ): 10584 â 10589. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1709210114
dc.identifier.citedreferenceContrerasâ Naranjo JC, Wu Hâ J, Ugaz VM Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017; 17 ( 21 ): 3558 â 3577.
dc.identifier.citedreferenceSedykh SE, Purvinish LV, Monogarov AS, et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochim Open. 2017; 4: 61 â 72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2214008517300056
dc.identifier.citedreferenceMusante L, Tataruch D, Gu D, et al. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep. 2014; 4 ( 1 ): 7532. Available from: http://www.nature.com/articles/srep07532
dc.identifier.citedreferenceHurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates epsteinâ barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NFâ κB signaling. J Virol. 2017; 91 ( 5 ): e02251 â 16. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.02251â 16
dc.identifier.citedreferenceShin H, Han C, Labuz JM, et al. Highâ yield isolation of extracellular vesicles using aqueous twoâ phase system. Sci Rep. 2015; 5 ( 1 ): 13103. Available from: http://www.nature.com/articles/srep13103
dc.identifier.citedreferenceGallartâ Palau X, Serra A, Wong ASW, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015; 5 ( 1 ): 14664. Available from: http://www.nature.com/articles/srep14664
dc.identifier.citedreferenceLai RC, Tan SS, Yeo RWY, et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles. 2016; 5 ( 1 ): 29828. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.29828
dc.identifier.citedreferenceWelton JL, Loveless S, Stone T, et al. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J Extracell Vesicles. 2017; 6 ( 1 ): 1369805. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1369805
dc.identifier.citedreferenceNakai W, Yoshida T, Diez D, et al. A novel affinityâ based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016; 6 ( 1 ): 33935. Available from: http://www.nature.com/articles/srep33935
dc.identifier.citedreferenceBrett SI, Lucien F, Guo C, et al. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Prostate. 2017; 77 ( 13 ): 1335 â 1343.
dc.identifier.citedreferenceSharma P, Ludwig S, Muller L, et al. Immunoaffinityâ based isolation of melanoma cellâ derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018; 7 ( 1 ): 1435138. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1435138
dc.identifier.citedreferenceFang X, Duan Y, Adkins GB, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterialâ based platform. Anal Chem. 2018; 90 ( 4 ): 2787 â 2795. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b04861
dc.identifier.citedreferenceBalaj L, Atai NA, Chen W, et al. Heparin affinity purification of extracellular vesicles. Sci Rep. 2015; 5: 10266. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25988257
dc.identifier.citedreferenceGhosh A, Davey M, Chute IC, et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One. 2014; 9 ( 10 ): e110443. Available from: http://dx.plos.org/10.1371/journal.pone.0110443
dc.identifier.citedreferenceEchevarria J, Royo F, Pazos R, et al. Microarrayâ based identification of lectins for the purification of human urinary extracellular vesicles directly from urine samples. Chembiochem. 2014; 15 ( 11 ): 1621 â 1626.
dc.identifier.citedreferenceWunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20â nm. Nat Nanotechnol. 2016; 11 ( 11 ): 936 â 940. Available from: http://www.nature.com/articles/nnano.2016.134
dc.identifier.citedreferenceMinciacchi VR, Spinelli C, Reisâ Sobreiro M, et al. MYC mediates large oncosomeâ induced fibroblast reprogramming in prostate cancer. Cancer Res. 2017; 77 ( 9 ): 2306 â 2317. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008â 5472.CANâ 16â 2942
dc.identifier.citedreferenceAtkinâ Smith GK, Paone S, Zanker DJ, et al. Isolation of cell typeâ specific apoptotic bodies by fluorescenceâ activated cell sorting. Sci Rep. 2017; 7: 39846. Available from: http://www.nature.com/articles/srep39846
dc.identifier.citedreferenceGroot Kormelink T, Arkesteijn GJA, Nauwelaers FA, et al. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by highâ resolution flow cytometry. Cytometry A. 2016; 89 ( 2 ): 135 â 147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25688721
dc.identifier.citedreferenceHigginbotham JN, Zhang Q, Jeppesen DK, et al. Identification and characterization of EGF receptor in individual exosomes by fluorescenceâ activated vesicle sorting. J Extracell Vesicles. 2016; 5: 29254. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27345057
dc.identifier.citedreferenceMerchant ML, Powell DW, Wilkey DW, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. PROTEOMICS â Clin Appl. 2010; 4 ( 1 ): 84 â 96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21137018
dc.identifier.citedreferenceKim D, Nishida H, An SY, et al. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci. 2016; 113 ( 1 ): 170 â 175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26699510
dc.identifier.citedreferenceHeath N, Grant L, De Oliveira TM, et al. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci Rep. 2018; 8 ( 1 ): 5730. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29636530
dc.identifier.citedreferenceKosanoviÄ M, MilutinoviÄ B, GoÄ S, et al. Ionâ exchange chromatography purification of extracellular vesicles. Biotechniques. 2017; 63 ( 2 ): 65 â 71. Available from: https://www.futureâ science.com/doi/10.2144/000114575
dc.identifier.citedreferencede Menezesâ Neto A, Sáez MJF, Lozanoâ Ramos I, et al. Sizeâ exclusion chromatography as a standâ alone methodology identifies novel markers in mass spectrometry analyses of plasmaâ derived vesicles from healthy individuals. J Extracell Vesicles. 2015; 4: 27378. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26154623
dc.identifier.citedreferenceMol EA, Goumans Mâ J, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using sizeâ exclusion chromatography compared to ultracentrifugation. Nanomedicine. 2017; 13 ( 6 ): 2061 â 2065. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1549963417300540
dc.identifier.citedreferenceSatzer P, Wellhoefer M, Jungbauer A. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography. J Chromatogr A. 2014; 1349: 44 â 49. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314006979
dc.identifier.citedreferenceLee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano. 2015; 9 ( 3 ): 2321 â 2327. Available from: http://pubs.acs.org/doi/10.1021/nn506538f
dc.identifier.citedreferenceLewis JM, Vyas AD, Qiu Y, et al. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano. 2018; 12 ( 4 ): 3311 â 3320. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b08199
dc.identifier.citedreferenceIbsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano. 2017; 11 ( 7 ): 6641 â 6651. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b00549
dc.identifier.citedreferenceLiu C, Guo J, Tian F, et al. Fieldâ free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017; 11 ( 7 ): 6968 â 6976. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b02277
dc.identifier.citedreferenceAgarwal K, Saji M, Lazaroff SM, et al. Analysis of exosome release as a cellular response to MAPK pathway inhibition. Langmuir. 2015; 31 ( 19 ): 5440 â 5448. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25915504
dc.identifier.citedreferenceYang JS, Lee JC, Byeon SK, et al. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow fieldâ flow fractionation and nanoflow liquid chromatographyâ tandem mass spectrometry. Anal Chem. 2017; 89 ( 4 ): 2488 â 2496. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.6b04634
dc.identifier.citedreferenceZhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow fieldâ flow fractionation. Nat Cell Biol. 2018; 20 ( 3 ): 332 â 343. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29459780
dc.identifier.citedreferenceRoda B, Zattoni A, Reschiglian P, et al. Fieldâ flow fractionation in bioanalysis: A review of recent trends. Anal Chim Acta. 2009; 635 ( 2 ): 132 â 143. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003267009000865
dc.identifier.citedreferenceEscudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derivedâ exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005; 3 ( 1 ): 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15740633
dc.identifier.citedreferenceLamparski HG, Methaâ Damani A, Yao JY, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Meth. 2002; 270 ( 2 ): 211 â 226. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12379326
dc.identifier.citedreferenceWei Z, Batagov AO, Schinelli S, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 2017; 8 ( 1 ): 1145. Available from: http://www.nature.com/articles/s41467â 017â 01196â x
dc.identifier.citedreferenceHeinemann ML, Vykoukal J Sequential filtration: A gentle method for the isolation of functional extracellular vesicles. In: Methods in molecular biology. Clifton, NJ. 2017. p. 33 â 41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28828646
dc.identifier.citedreferenceHeinemann ML, Ilmer M, Silva LP, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014; 1371: 125 â 135. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314015908
dc.identifier.citedreferenceJong AY, Wu Câ H, Li J, et al. Largeâ scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017; 6 ( 1 ): 1294368. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1294368
dc.identifier.citedreferenceTan CY, Lai RC, Wong W, et al. Mesenchymal stem cellâ derived exosomes promote hepatic regeneration in drugâ induced liver injury models. Stem Cell Res Ther. 2014; 5 ( 3 ): 76. Available from: http://stemcellres.com/content/5/3/76
dc.identifier.citedreferenceLobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015; 4: 27031. Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.27031
dc.identifier.citedreferenceVergauwen G, Dhondt B, Van Deun J, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep. 2017; 7 ( 1 ): 2704. Available from: http://www.nature.com/articles/s41598â 017â 02599â y
dc.identifier.citedreferenceWelton JL, Webber JP, Botos Lâ A, et al. Readyâ made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles. 2015; 4: 27269. Available from: http://www.tandfonline.com/doi/full/10.3402/jev.v4.27269
dc.identifier.citedreferenceCorso G, Mäger I, Lee Y, et al. Reproducible and scalable purification of extracellular vesicles using combined bindâ elute and size exclusion chromatography. Sci Rep. 2017; 7 ( 1 ): 11561. Available from: http://www.nature.com/articles/s41598â 017â 10646â x
dc.identifier.citedreferenceMoralesâ Kastresana A, Telford B, Musich TA, et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep. 2017; 7 ( 1 ): 1878. Available from: http://www.nature.com/articles/s41598â 017â 01731â 2
dc.identifier.citedreferenceMontis C, Zendrini A, Valle F, et al. Size distribution of extracellular vesicles by optical correlation techniques. Colloids Surf B Biointerfaces. 2017; 158: 331 â 338. Available from: http://linkinghub.elsevier.com/retrieve/pii/S092777651730406X
dc.identifier.citedreferenceClayton A, Buschmann D, Byrd JB, et al. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles. 2018; 7 ( 1 ): 1473707. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1473707
dc.identifier.citedreferenceReiner AT, Witwer KW, Van Balkom BWM, et al. Concise review: developing bestâ practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017; 6 ( 8 ).
dc.identifier.citedreferenceLener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials â an ISEV position paper. J Extracell Vesicles. 2015; 4: 30087. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4698466&tool=pmcentrez&rendertype=abstract
dc.identifier.citedreferenceTrummer A, De Rop C, Tiede A, et al. Recovery and composition of microparticles after snapâ freezing depends on thawing temperature. Blood Coagul Fibrinolysis. 2009; 20 ( 1 ): 52 â 56. Available from: https://insights.ovid.com/crossref?an=00001721â 200901000â 00010
dc.identifier.citedreferenceJeyaram A, Jay SM. Preservation and storage stability of extracellular vesicles for therapeutic applications. Aaps J. 2017; 20 ( 1 ): 1. Available from: http://link.springer.com/10.1208/s12248â 017â 0160â y
dc.identifier.citedreferenceJin Y, Chen K, Wang Z, et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer. 2016; 16 ( 1 ): 753. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27662833
dc.identifier.citedreferenceMaroto R, Zhao Y, Jamaluddin M, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles. 2017; 6 ( 1 ): 1359478. Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359478
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.