Show simple item record

Recent trend in the global distribution of aerosol direct radiative forcing from satellite measurements

dc.contributor.authorSubba, Tamanna
dc.contributor.authorGogoi, Mukunda M.
dc.contributor.authorPathak, Binita
dc.contributor.authorBhuyan, Pradip K.
dc.contributor.authorBabu, S. Suresh
dc.date.accessioned2020-12-02T14:38:59Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:38:59Z
dc.date.issued2020-11
dc.identifier.citationSubba, Tamanna; Gogoi, Mukunda M.; Pathak, Binita; Bhuyan, Pradip K.; Babu, S. Suresh (2020). "Recent trend in the global distribution of aerosol direct radiative forcing from satellite measurements." Atmospheric Science Letters 21(11): n/a-n/a.
dc.identifier.issn1530-261X
dc.identifier.issn1530-261X
dc.identifier.urihttps://hdl.handle.net/2027.42/163609
dc.description.abstractGlobal distribution of aerosol direct radiative forcing (DRF) is estimated using Clouds and Earth’s Radiant Energy System (CERES) synoptic (SYN) 1° datasets. During 2001–2017, a statistically significant change of global DRFs is revealed with a general decreasing trend (i.e., a reduced cooling effect) at the top of the atmosphere (DRFTOA ~ 0.017 W⋅m−2⋅year−1) and at the surface (DRFSFC ~ 0.033 W⋅m−2⋅year−1) with rapid change over the land compared to the global ocean. South Asia and Africa/Middle East regions depict significant increasing trend of atmospheric warming by 0.025 and 0.002 W·m−2⋅year−1 whereas, the rest of the regions show a decline. These regional variations significantly modulate the global mean DRF (−5.36 ± 0.04 W·m−2 at the TOA and − 9.64 ± 0.07 W·m−2 at the surface during the study period). The observed DRF trends are coincident with the change in the underlying aerosol properties, for example, aerosol optical depth, Ångström exponent and partly due to the increasing columnar burden of SO2 over some of the regions. This indicates that increasing industrialization and urbanization have caused prominent change in the DRF during recent decades.Change in the underlying aerosol properties are synchronous with the change in the forcing.
dc.publisherJohn Wiley & Sons, Ltd.
dc.subject.othertrend
dc.subject.otherglobal aerosol radiative forcing
dc.subject.otherangstrom exponent
dc.subject.otheraerosol optical depth
dc.titleRecent trend in the global distribution of aerosol direct radiative forcing from satellite measurements
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163609/2/asl2975.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163609/1/asl2975_am.pdfen_US
dc.identifier.doi10.1002/asl.975
dc.identifier.sourceAtmospheric Science Letters
dc.identifier.citedreferenceRose, F.G., Rutan, D.A., Charlock, T.P., Smith, G.L. and Kato, S. ( 2013 ) An algorithm for the constraining of radiative transfer calculations to CERES‐observed broadband top‐of‐atmosphere irradiance. Journal of Atmospheric and Oceanic Technology, 30, 1091 – 1106.
dc.identifier.citedreferenceRutan, D.A., Kato, S., Ssai, D.R.D., Rose, F.G., Nguyen, L.T., Cladwell, T.E. and Loeb, N.G. ( 2015 ) CERES synoptic product: methodology and validation of surface radiant flux. Journal of Atmospheric and Oceanic Technology, 32, 1121–1143. https://doi.org/10.1175/jtech-d-14-00165.1.
dc.identifier.citedreferenceSaikawa, E., Trail, M., Zhong, M., Wu, Q., Young, C.L., JanssensMaenhout, G., Klimont, Z., Wagner, F., Ichi Kurokawa, J., Nagpure, A.S. and Gurjar, B.R. ( 2017 ) Uncertainties in emissions estimates of greenhouse gases and air pollutants in India and their impacts on regional air quality. Environmental Research Letters, 12, 065002. https://doi.org/10.1088/1748-9326/aa6cb4.
dc.identifier.citedreferenceSamset, B.H., Stjern, C.W., Andrews, E., Kahn, R.A., Myhre, G., Schulz, M. and Schuster, G.L. ( 2018 ) Aerosol absorption: Progress towards global and regional constraints. Current Climate Change Reports, 4, 65 – 83. https://doi.org/10.1007/s40641-018-0091-4.
dc.identifier.citedreferenceSatheesh, S.K. ( 2002 ) Aerosol radiative forcing over land: effect of surface and cloud reflection. Annales Geophysicae, 20, 2105 – 2109.
dc.identifier.citedreferenceSchoeberl, M.R., Douglass, A.R., Hilsenrath, E., Bhartia, P.K., Beer, R., Waters, J.W., Gunson, M.R., Froidevaux, L., Gille, J.C., Barnett, J.J., Levelt, P.F. and DeCola, P. ( 2006 ) Overview of the EOS aura mission. IEEE Transactions on Geoscience and Remote Sensing, 44, 1066 – 1072. https://doi.org/10.1109/TGRS.2005.861950.
dc.identifier.citedreferenceSeinfeld, J.H. and Pandis, S.N. ( 2006 ) Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Hoboken, NJ: Wiley.
dc.identifier.citedreferenceSmith, S.J., van Aardenne, J., Klimont, Z., Andres, R., Volke, A.C. and Delgado, A.S. ( 2011 ) Anthropogenic sulfur dioxide emissions: 1850–2005. Atmospheric Chemistry and Physics, 11, 1101 – 1116.
dc.identifier.citedreferenceStevens, B. ( 2015 ) Rethinking the lower bound on aerosol Radiative forcing. Journal of Climate, 28, 4794 – 4819. https://doi.org/10.1175/JCLI-D-14-00656.1.
dc.identifier.citedreferenceSrivastava, R. ( 2017 ) Trends in aerosol optical properties over South Asia. International Journal of Climatology, 37 ( 1 ), 371 – 380. https://doi.org/10.1002/joc.4710.
dc.identifier.citedreferenceStreets, D.G., Canty, T., Carmichael, G.R., de Foy, B., Dickerson, R.R., Duncan, B.N., Edwards, D.P., Haynes, J.A., Henze, D.K., Houyoux, M.R., Jacobi, D.J., Krotkov, N.A., Lamsal, L.N., Liu, Y., Lu, Z.F., Martini, R.V., Pfister, G.G., Pinder, R.W., Salawitch, R.J. and Wechti, K.J. ( 2013 ) Emissions estimation from satellite retrievals: A review of current capability. Atmospheric Environment, 77, 1011 – 1042. https://doi.org/10.1016/j.atmosenv.2013.05.051.
dc.identifier.citedreferenceStocker, T.F., Qin, D., Plattner, G.‐K., Alexander, L.V., Allen, S.K., Bindoff, N.L., Bréon, F.‐M., Church, J.A., Cubasch, U., Emori, S., Forster, P., Friedlingstein, P., Gillett, N., Gregory, J.M., Hartmann, D.L., Jansen, E., Kirtman, B., Knutti, R., Krishna Kumar, K., Lemke, P., Marotzke, J., Masson‐Delmotte, V., Meehl, I.I., Mokhov, G.A., Piao, S., Ramaswamy, V., Randall, D., Rhein, M., Rojas, M., Sabine, C., Shindell, D., Talley, L.D., Vaughan, D.G. and Xie, S.‐P. ( 2013 ) Technical summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, pp. 33 – 115. https://doi.org/10.1017/CBO9781107415324.005.
dc.identifier.citedreferenceSu, W., Liang, L., Doelling, D.R., Minnis, P., Duda, D.P., Khlopenkov, K.V., et al. ( 2018 ) Determining the shortwave radiative flux from earth polychromatic imaging camera. Journal of Geophysical Research, 123 ( 11 ), 479 – 491. https://doi.org/10.1029/2018JD029390.
dc.identifier.citedreferenceSubba, T., Gogoi, M.M., Pathak, B., Ajay, P., Bhuyan, P.K. and Solmon, F. ( 2018 ) Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects. Atmospheric Research, 204 ( 2018 ), 110 – 127.
dc.identifier.citedreferenceWang, J., Dong, J., Wang, S., Zhang, L., He, H., Yi, Y., Lu, G., Oyler, J., Smith, W.K. and Zhao, M. ( 2017 ) Decreasing net primary production due to drought and slight decreases in solar radiation in China from 2000 to 2012. Journal of Geophysical Research: Atmospheres, 122, 261 – 278. https://doi.org/10.1002/2016JG003417.
dc.identifier.citedreferenceWang, S., Xing, J., Zhao, B., Jang, C. and Hao, J. ( 2014 ) Effectiveness of national air pollution control policies on the air quality in metropolitan areas of China. Journal of Environmental Sciences, 26 ( 1 ), 13 – 22. https://doi.org/10.1016/S1001-0742(13)60381-2.
dc.identifier.citedreferenceWielicki, B.A., Barkstrom, B.R., Harrison, E.F., Lee, R.B., III, Smith, G.L. and Cooper, J.E. ( 1996 ) Clouds and the Earth’s radiant energy system (CERES): an earth observing system experiment. Bulletin of the American Meteorological Society, 77, 853 – 868. https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.
dc.identifier.citedreferenceXing, J., Mathur, R., Pleim, J., Hogrefe, C., Gan, C.‐M., Wong, D.C., Wei, C. and Wang, J. ( 2015 ) Air pollution and climate response to aerosol direct radiative effects: a modeling study of decadal trends across the northern hemisphere. Journal of Geophysical Research – Atmospheres, 120, 12221 – 12236. https://doi.org/10.1002/2015JD023933.
dc.identifier.citedreferenceXing, J., Pleim, J., Mathur, R., Pouliot, G., Hogrefe, C., Gan, C.M. and Wei, C. ( 2013 ) Historical gaseous and primary aerosol emissions in the United States from 1990 to 2010. Atmospheric Chemistry and Physics, 13, 7531 – 7549. https://doi.org/10.5194/acp-13-7531-2013.
dc.identifier.citedreferenceYang, Y., Liao, H. and Lou, S. ( 2016 ) Increase in winter haze over eastern China in recent decades: roles of variations in meteorological parameters and anthropogenic emissions. Journal of Geophysical Research – Atmospheres, 121, 13050 – 13065. https://doi.org/10.1002/2016JD025136.
dc.identifier.citedreferenceYang, Y., Wang, H., Smith, S.J., Zhang, R., Lou, S., Yu, H., et al. ( 2018 ) Source apportionments of aerosols and their direct radiative forcing and long‐term trends over continental United States. Earth’s Future, 6, 793 – 808. https://doi.org/10.1029/2018EF000859.
dc.identifier.citedreferenceZarzycki, C.M. and Bond, T.C. ( 2010 ) How much can the vertical distribution of black carbon affect its global direct radiative forcing? Geophysical Research Letters, 37 ( 20 ), L20807.
dc.identifier.citedreferenceZhang, J., Christopher, S.A., Remer, L.A. and Kaufman, Y.J. ( 2005 ) Shortwave aerosol radiative forcing over cloud‐free oceans from Terra: 2. Seasonal and global distributions. Journal of Geophysical Research, 110, D10S24. https://doi.org/10.1029/2004JD005009.
dc.identifier.citedreferenceZhao, B., Jiang, J.H., Diner, D., Worden, J., Liou, K.N., Su, H., Xing, J., Garay, M. and Huang, L. ( 2017 ) Decadal‐scale trends in regional aerosol particle properties and their linkage to emission changes. Environmental Research Letters, 12, 054021.
dc.identifier.citedreferenceAas, W., Mortier, A., Bowersox, V., Cherian, R., Faluvegi, G., Fagerli, H., Hand, J., Klimont, Z., Galy‐Lacaux, C., Lehmann, C.M.B., Myhre, C.L., Myhre, G., Olivié, D., Sato, K., Quaas, J., Rao, P.S.P., Schulz, M., Shindell, D., Skeie, R.B., Stein, A., Takemura, T., Tsyro, S., Vet, R. and Xu, X. ( 2019 ) Global and regional trends of atmospheric sulfur. Scientific Reports, 9, 953. https://doi.org/10.1038/s41598-018-37304-0.
dc.identifier.citedreferenceAngstrom, A. ( 1929 ) On the atmospheric transmission of sun radiation and on dust in the air. Geografiska Annaler, 11, 156 – 166.
dc.identifier.citedreferenceAttwood, A.R., et al. ( 2014 ) Trends in sulfate and organic aerosol mass in the southeast U.S.: impact on aerosol optical depth and radiative forcing. Geophysical Research Letters, 41, 7701 – 7709.
dc.identifier.citedreferenceBabu, S.S., Manoj, M.R., Moorthy, K.K., Gogoi, M.M., Nair, V.S., Kompalli, S.K., Satheesh, S.K., Niranjan, K., Ramagopal, K., Bhuyan, P.K. and Singh, D. ( 2013 ) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. Journal of Geophysical Research, 118, 1 – 13. https://doi.org/10.1002/2013JD020507.
dc.identifier.citedreferenceBellouin, N., Boucher, O., Haywood, J. and Reddy, M.S. ( 2005 ) Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 22 – 29. https://doi.org/10.1038/nature04348.
dc.identifier.citedreferenceBenedetti, A., Baldasano, J.M., Basart, S., Benincasa, F., Boucher, O., Brooks, M.E., Chen, J.‐P., Colarco, P.R., Gong, S., Huneeus, N., Jones, L., Lu, S., Menut, L., Morcrette, J.‐J., Mulcahy, J., Nickovic, S., Pérez García‐Pando, C., Reid, J.S., Sekiyama, T.T., Tanaka, T.Y., Terradellas, E., Westphal, D.L., Zhang, X.‐Y. and Zhou, C.‐H. ( 2014 ) Operational dust prediction. In: Mineral Dust. Dordrecht: Springer, pp. 223 – 265.
dc.identifier.citedreferenceBlanchard, C.L., Hidy, G.M., Shaw, S., Baumann, K. and Edgerton, E.S. ( 2016 ) Effects of emission reductions on organic aerosol in the southeastern United States. Atmospheric Chemistry Physics, 16, 215 – 238.
dc.identifier.citedreferenceBlanchard, C.L., Hidy, G.M., Tanenbaum, S., Edgerton, E.S. and Hartsell, B.E. ( 2013 ) The southeastern aerosol research and characterization (SEARCH) study: temporal trends in gas and PM concentrations and composition, 1999‐2010. Journal of the Air & Waste Management Association, 63, 247 – 259.
dc.identifier.citedreferenceBond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Karcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G. and Zender, C.S. ( 2013 ) Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research‐Atmospheres, 118, 5380 – 5552. https://doi.org/10.1002/jgrd.50171.
dc.identifier.citedreferenceBoucher, O. and Haywood, J. ( 2001 ) On summing the components of radiative forcing of climate change. Climate Dynamics, 18, 297 – 302.
dc.identifier.citedreferenceChristopher, S.A. and Zhang, J. ( 2004 ) Cloud‐free shortwave aerosol radiative effect over oceans: strategies for identifying anthropogenic forcing from Terra satellite measurements. Geophysical Research Letters, 31, L18101. https://doi.org/10.1029/2004GL020510.
dc.identifier.citedreferenceChung, C.E. ( 2012 ) Direct Radiative forcing: a review, atmospheric aerosols: regional characteristics. Chemistry and Physics, 1, 379–394, https://doi.org/10.5772/50248.
dc.identifier.citedreferenceChung, C.E., Ramanathan, V., Kim, D. and Podgorny, I.A. ( 2005 ) Global anthropogenic aerosol direct forcing derived from satellite and ground‐based observations. Journal of Geophysical Research, 110, D24207.
dc.identifier.citedreferenceCollins, W.D., et al. ( 2002 ) Simulation of aerosol distributions and radiative forcing for INDOEX: regional climate impacts. Journal of Geophysical Research, 107 (D19), 8028, 1–20, https://doi.org/10.1029/2000JD000032.
dc.identifier.citedreferenceCollins, W.D., Rasch, P.J., Eaton, B.E., Khattatov, B.V., Lamarque, J.‐F. and Zender, C.S. ( 2001 ) Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: methodology for INDOEX. Journal of Geophysical Research, 106, 7313 – 7336.
dc.identifier.citedreferenceContreras, R.R., Zhang, J., Reid, J.S. and Christopher, S. ( 2017 ) A study of 15‐year aerosol optical thickness and direct shortwave aerosol radiative effect trends using MODIS, MISR, CALIOP and CERES. Atmospheric Chemistry Physics, 17, 13849 – 13868.
dc.identifier.citedreferenceDey, S. and Girolamo, D.L. ( 2011 ) A decade of change in aerosol properties over the Indian subcontinent. Geophysical Research Letters, 38, L14811.
dc.identifier.citedreferenceDoelling, D.R., Loeb, N.G., Keyes, D.F., Nordeen, M.L., Morstad, D., Nguyen, C., Wielicki, B.A., Young, D.F. and Sun, M. ( 2013 ) Geostationary enhanced temporal interpolation for CERES flux products. Journal of Atmospheric and Oceanic Technology, 30, 1072 – 1090.
dc.identifier.citedreferenceFadnavis, S., Sabin, T.P., Roy, C., Rowlinson, M., Rap, A., Vernier, J.P. and Sioris, C.E. ( 2019 ) Elevated aerosol layer over South Asia worsens the Indian droughts. Scientific Reports, 9, 10268. https://doi.org/10.1038/s41598-019-46704-9.
dc.identifier.citedreferenceFioletov, V.E., et al. ( 2013 ) Application of OMI, SCIAMACHY, and GOME‐2 satellite SO2 retrievals for detection of large emission sources. Journal of Geophysical Research, 118, 11399 – 11418.
dc.identifier.citedreferenceForster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M. and Van Dorlnd, R. ( 2007 ) Changes in atmospheric constituents and in radiative forcing. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceFu, Q. and Liou, K.N. ( 1992 ) On the correlated k‐distribution method for radiative transfer in nonhomogeneous atmospheres. Journal of the Atmospheric Sciences, 49, 2139 – 2156.
dc.identifier.citedreferenceFu, Q. and Liou, K.N. ( 1993 ) Parameterization of the radiative properties of cirrus clouds. Journal of the Atmospheric Sciences, 50, 2008 – 2025.
dc.identifier.citedreferenceGogoi, M.M., Babu, S.S., Moorthy, K.K., Bhuyan, P.K., Pathak, B., Subba, T., Bharali, C., Chutia, L., Kundu, S.S., Borgahain, A., De, B.K., Guha, A. and Singh, S.B. ( 2017 ) Radiative Effects of Absorbing Aerosols over Northeastern. India: Observations and model simulations. Journal of Geophysical Research. https://doi.org/10.1002/2016JD025592.
dc.identifier.citedreferenceGidhagen, L., Johansson, C., Langner, J. and Foltescu, V.L. ( 2005 ) Urban scale modelling of particle number concentrations in Stockholm. Atmospheric Environment, 39, 1711 – 1725.
dc.identifier.citedreferenceHansen, J., Sato, M., Lacis, A. and Ruedy, R. ( 1997 ) The missing climate forcing, Phil. Trans. Royal Society. London B, 352, 231 – 240.
dc.identifier.citedreferenceHatzianastassiou, N., Katsoulis, B. and Vardavas, I. ( 2004 ) Global distribution of aerosol direct radiative forcing in the ultraviolet and visible arising under clear skies. Tellus B: Chemical and Physical Meteorology, 56 ( 1 ), 51 – 71. https://doi.org/10.3402/tellusb.v56i1.16400.
dc.identifier.citedreferenceIntergovernmental Panel on Climate Change (IPCC). ( 2007 ) Climate Change 2007. Cambridge, UK and New York, NY: Cambridge University Press.
dc.identifier.citedreferenceIPCC. ( 2013 ) Climate Change 2013, Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, NY: Cambridge University press, Cambridge.
dc.identifier.citedreferenceJin, Q. and Wang, C. ( 2018 ) The greening of northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival. Scientific Reports, 8, 4573. https://doi.org/10.1038/s41598-018-23055-5.
dc.identifier.citedreferenceKahn, R.A. and Gaitley, B.J. ( 2015 ) An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research, 120, 4248 – 4281.
dc.identifier.citedreferenceKahn, R.A. ( 2012 ) Reducing the uncertainties in direct aerosol radiative forcing. Surveys in Geophysics, 33, 701 – 721. https://doi.org/10.1007/s10712-011-9153-z.
dc.identifier.citedreferenceKahn, R., Petzold, A., Wendisch, M., Bierwirth, E., Dinter, T., Esselborn, M., Fiebig, M., Heese, B., Knippertz, P., Muller, D., Schladitz, A. and von Hoyningen‐Huene, W. ( 2009 ) Desert dust aerosol air mass mapping in the Western Sahara, using particle properties derived from space‐based multi‐angle imaging. Tellus, 61B, 239 – 251. https://doi.org/10.1111/j.1600-0889.2008.00398.
dc.identifier.citedreferenceKahn, R.A., Gaitley, B.J., Martonchik, J.V., Diner, D.J., Crean, K.A. and Holben, B. ( 2005 ) Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. Journal of Geophysical Research: Atmospheres, 110, D10S04. https://doi.org/10.1029/2004jd004706.
dc.identifier.citedreferenceKato, S., Ackerman, T., Mather, J. and Clothiaux, E. ( 1999 ) The k‐distribution method and correlated‐k approximation for a shortwave radiative transfer model. Journal of Quantitative Spectroscopy & Radiative Transfer, 62, 109 – 121.
dc.identifier.citedreferenceKendall, M.G. ( 1975 ) Rank Correlation Methods, 4th edition. London: Charles Griffin.
dc.identifier.citedreferenceKratz, D.P. and Rose, F.G. ( 1999 ) Accounting for molecular absorption within the spectral range of the CERES window channel. Journal of Quantitative Spectroscopy & Radiative Transfer, 61, 83 – 95.
dc.identifier.citedreferenceKrotkov, N.A., McLinden, C.A., Li, C., Lamsal, L.N., Celarier, E.A., Marchenko, S.V., Swartz, W.H., Bucsela, E.J., Joiner, J., Duncan, B.N., Boersma, K.F., Veefkind, J.P., Levelt, P.F., Fioletov, V.E., Dickerson, R.R., He, H., Lu, Z. and Streets, D.G. ( 2016 ) Aura OMI observations of regional SO 2 and NO 2 pollution changes from 2005 to 2015. Atmospheric Chemistry Physics, 16, 4605 – 4629. https://doi.org/10.5194/acp-16-4605-2016.
dc.identifier.citedreferenceLevelt, P.F., Van Den Oord, G.H.J., Dobber, M.R., Mälkki, A., Visser, H., De Vries, J., Stammes, P., Lundell, J.O.V. and Saari, H. ( 2006 ) The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44, 1093 – 1101.
dc.identifier.citedreferenceLevy, H., Horowitz, L.W., Schwarzkopf, M.D., Ming, Y., Golaz, J.C., Naik, V. and Ramaswamy, V. ( 2013 ) The roles of aerosol direct and indirect effects in past and future climate change. Journal of Geophysical Research: Atmospheres, 118, 4521 – 4532. https://doi.org/10.1002/jgrd.50192.
dc.identifier.citedreferenceLevy, R.C., Remer, L.A., Tanré, D., Mattoo, S., Kaufman, Y.J. ( 2009 ) Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: collections 005 and 051: revision 2; Feb Product ID: MOD04/MYD04, 1‐95.
dc.identifier.citedreferenceLi, C., Joiner, J., Krotkov, N.a. and Bhartia, P.K. ( 2013 ) A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: application to the ozone monitoring instrument. Geophysical Research Letters, 40, 6314 – 6318. https://doi.org/10.1002/2013GL058134.
dc.identifier.citedreferenceLi, J., Carlson, B.E., Dubovik, O. and Lacis, A.A. ( 2014 ) Recent trends in aerosol optical properties derived from AERONET measurements. Atmospheric Chemistry Physics, 14, 12271 – 12289.
dc.identifier.citedreferenceLoeb, N.G. and Kato, S. ( 2002 ) Top‐of‐atmosphere direct radiative effect of aerosols from the clouds and the Earth’s radiant energy system satellite instrument (CERES). Journal of Climate, 15, 1474 – 1484.
dc.identifier.citedreferenceMann, H.B. ( 1945 ) Nonparametric tests against trend. Econometrica, 13, 245 – 259.
dc.identifier.citedreferenceManoj, M.R., Satheesh, S.K., Moorthy, K.K., Gogoi, M.M. and Babu, S.S. ( 2019 ) Decreasing trend in black carbon aerosols over the Indian region. Geophysical Research Letters, 46 ( 5 ), 2903 – 2910. https://doi.org/10.1029/2018GL081666.
dc.identifier.citedreferenceMao, K.B., Ma, Y., Xia, L., Chen, W.Y., Shen, X.Y., He, T.J. and Xu, T.R. ( 2014 ) Global aerosol change in the last decade: an analysis based on MODIS data. Atmospheric Environment, 94, 680 – 686. https://doi.org/10.1016/j.atmosenv.2014.04.053.
dc.identifier.citedreferenceMatthias, V., Arndt, J.A., Aulinger, A., Bieser, J., Denier van der Gon, H., Kranenburg, R., Kuenen, J., Neumann, D., Pouliot, G. and Quante, M. ( 2018 ) Modeling emissions for three‐dimensional atmospheric chemistry transport models. Journal of the Air & Waste Management Association, 68 ( 8 ), 763 – 800. https://doi.org/10.1080/10962247.2018.1424057.
dc.identifier.citedreferenceMoorthy, K.K., Babu, S.S., Manoj, M.R. and Satheesh, S.K. ( 2013 ) Buildup of aerosols over the Indian region. Geophysical Research Letters, 40, 1011 – 1014. https://doi.org/10.1002/GRL.50165.
dc.identifier.citedreferenceMurphy, D.M. ( 2013 ) Little net clear‐sky radiative forcing from recent regional redistribution of aerosols. Nature Geoscience, 6, 258 – 262. https://doi.org/10.1038/ngeo1740.
dc.identifier.citedreferenceMurphy, D.M. and Ravishankara, A.R. ( 2018 ) Trends and patterns in the contributions to cumulative radiative forcing from different regions of the world. Proceedings of the National Academy of Sciences, 115 ( 52 ), 113192 – 113197. https://doi.org/10.1073/pnas.1813951115.
dc.identifier.citedreferenceMyhre, G., Shindell, D., Bréon, F.‐M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.‐F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T. and Zhang, H. ( 2013 ) Anthropogenic and natural radiative forcing. In: Climate Change 2013. The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.
dc.identifier.citedreferenceNair, V.N., Babu, S.S., Manoj, M.R., Moorthy, K.K. and Chin, M. ( 2016 ) Direct radiative effects of aerosols over South Asia from observations and modelling. Climate Dynamics, 49, 1411 – 1428. https://doi.org/10.1007/s00382-016-3384-0.
dc.identifier.citedreferencePan, X., Chin, M., Gautam, R., Bian, H., Kim, D., Colarco, P.R., Diehl, T.L., Bauer, S. and Bellouin, N. ( 2015 ) A multi‐model evaluation of aerosols over South Asia: common problems and possible causes. Atmospheric Chemistry Physics, 15, 5903 – 5928. https://doi.org/10.5194/acp15-5903-2015.
dc.identifier.citedreferencePandey, S.K., Vinoj, V., Landu, K. and Babu, S.S. ( 2017 ) Declining pre‐monsoon dust loading over South Asia: signature of a changing regional climate. Scientific Reports, 7, 16062. https://doi.org/10.1038/s41598-017-16338-w.
dc.identifier.citedreferencePatadia, F., Gupta, P. and Christopher, S.A. ( 2008 ) First observational estimates of global clear sky shortwave aerosol direct radiative effect over land. Geophysical Research Letters, 35, L04810. https://doi.org/10.1029/2007GL032314.
dc.identifier.citedreferencePathak, B., Subba, T., Dahutia, P., Bhuyan, P.K., Moorthy, K.K., Gogoi, M.M., Babu, S.S., Chutia, L., Ajay, P., Biswas, J., Bharali, C., Borgohain, A., Dhar, P., Guha, A., De, B.K., Banik, T., Chakraborty, M., Kundu, S.S., Sudhakar, S. and Singh, S.B. ( 2016 ) Aerosol characteristics in north‐East India using ARFINET spectral optical depth measurements. Atmospheric Environment, 125, 461 – 473. https://doi.org/10.1016/j.atmosenv.2015.07.038.
dc.identifier.citedreferencePaulot, F., Paynter, D., Naik, V. and Horowitz, L.W. ( 2018 ) Changes in the aerosol direct radiative forcing from 2001 to 2015: observational constraints and regional mechanisms. Atmospheric Chemistry Physics, 18, 13265 – 13281. https://doi.org/10.5194/acp-18-13265.
dc.identifier.citedreferencePenner, J.E., Charlson, R.J., Schwartz, S.E., Hales, J.M., Laulainen, N.S., Travis, L., Leifer, R., Novakov, T., Ogren, J. and Radke, L.F. ( 1994 ) Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bulletin of the American Meteorological Society, 75, 375 – 400.
dc.identifier.citedreferencePutaud, J.P., Cavalli, F., Martins dos Santos, S. and Dell’Acqua, A. ( 2014 ) Long‐term trends in aerosol optical characteristics in the Po Valley. Atmospheric Chemistry Physics, 14, 9129 – 9136.
dc.identifier.citedreferenceQuaas, J., Boucher, O., Bellouin, N. and Kinne, S. ( 2008 ) Satellite‐based estimate of the direct and indirect aerosol climate forcing. Journal of Geophysical Research, 113, D05204. https://doi.org/10.1029/2007JD008962.
dc.identifier.citedreferenceRandles, C.A., Kinne, S., Myhre, G., Schulz, M., Stier, P., Fischer, J., Doppler, L., Highwood, E., Ryder, C., Harris, B., Huttunen, J., Ma, Y., Pinker, R.T., Mayer, B., Neubauer, D., Hitzenberger, R., Oreopoulos, L., Lee, D., Pitari, G., di Genova, G., Quaas, J., Rose, F.G., Kato, S., Rumbold, S.T., Vardavas, I., Hatzianastassiou, N., Matsoukas, C., Yu, H., Zhang, F., Zhang, H. and Lu, P. ( 2013 ) Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: results from the AeroCom Radiative transfer experiment. Atmospheric Chemistry and Physics, 13, 2347 – 2379.
dc.identifier.citedreferenceRandles, C.A. and Ramaswamy, V. ( 2008 ) Absorbing aerosols over Asia: a geophysical fluid dynamics laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption. Journal of Geophysical Research, 113, D21203. https://doi.org/10.1029/2008JD010140.
dc.identifier.citedreferenceReichle, R.H., et al. ( 2009 ) Recent advances in land data assimilation at the NASA global modeling and assimilation office. In: Park, S.K. and Xu, L. (Eds.) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Berlin, Heidelberg: Springer.
dc.identifier.citedreferenceRemer, L.A., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E. and Holben, B.N. ( 2005 ) The MODIS aerosol algorithm, products, and validation. Journal of the Atmospheric Sciences, 62 ( 4 ), 947 – 973.
dc.identifier.citedreferenceRemer, L.A., Kleidman, R.G., Levy, R.C., Kaufman, Y.J., Tanré, D., Mattoo, S., Martins, J.V., Ichoku, C., Koren, I., Yu, H. and Holben, B. ( 2008 ) Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research, 113, D14S07. https://doi.org/10.1029/2007JD009661.
dc.identifier.citedreferenceRidley, D.A., Heald, C.L., Ridley, K.J. and Kroll, J.H. ( 2018 ) Causes and consequences of decreasing atmospheric organic aerosol in the United States. Proceedings of the National Academy of Sciences, 115 ( 2 ), 290 – 295. https://doi.org/10.1073/pnas.1700387115.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.