Show simple item record

Evaluating community effects of a Keystone Ant, Azteca sericeasur, on Inga micheliana leaf litter decomposition in a shaded coffee agro- ecosystem

dc.contributor.authorSchmitt, Lauren
dc.contributor.authorAponte‐rolón, Bolívar
dc.contributor.authorPerfecto, Ivette
dc.date.accessioned2020-12-02T14:40:57Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:40:57Z
dc.date.issued2020-11
dc.identifier.citationSchmitt, Lauren; Aponte‐rolón, Bolívar ; Perfecto, Ivette (2020). "Evaluating community effects of a Keystone Ant, Azteca sericeasur, on Inga micheliana leaf litter decomposition in a shaded coffee agro- ecosystem." Biotropica 52(6): 1253-1261.
dc.identifier.issn0006-3606
dc.identifier.issn1744-7429
dc.identifier.urihttps://hdl.handle.net/2027.42/163620
dc.description.abstractOur research examined the effect of Azteca sericeasur, a keystone arboreal ant, on the decomposition of leaf litter of the shade tree, Inga micheliana, in coffee agro- ecosystems. This interaction is important in understanding spatial heterogeneity in decomposition. We hypothesized that A. sericeasur could affect leaf litter decomposition by excluding other ants, which could release decomposers, like collembolans, from predation pressure. Determining the relative strengths of these interactions can illuminate the importance of A. sericeasur in decomposition and nutrient cycling processes. We assessed the ant and arthropod communities surrounding 10 pairs of trees, where each pair included one shade tree with an established A. sericeasur nest. Tuna baits were used in conjunction with pitfall traps to assess the ant and arthropod community, and litterbags with I. micheliana leaf litter were used to assess rates of decomposition. The species richness of ants did not change in proximity to A. sericeasur nests, though the ant communities were distinct. Abundance of Collembola and community composition of other invertebrates did not change in the presence of A. sericeasur nests, and there were no differences in leaf litter decomposition rates. This contradicts past studies that suggest A. sericeasur reduces ant species richness in its territory. We suggest that other ants may avoid A. sericeasur by moving within and beneath the leaf litter. Our results indicate that there is no net effect of A. sericeasur on leaf litter decomposition.
dc.publisherWiley Periodicals, Inc.
dc.publisherHarvard University Press
dc.subject.otheragro- ecosystems
dc.subject.otherkeystone species
dc.subject.othercommunity assembly
dc.subject.othercoffee agro- ecosystems
dc.subject.otherChiapas Mexico
dc.subject.otherecosystem function
dc.titleEvaluating community effects of a Keystone Ant, Azteca sericeasur, on Inga micheliana leaf litter decomposition in a shaded coffee agro- ecosystem
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163620/2/btp12833_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163620/1/btp12833.pdfen_US
dc.identifier.doi10.1111/btp.12833
dc.identifier.sourceBiotropica
dc.identifier.citedreferenceRivera Salinas, I. ( 2019 ). The role of higher order interactions in structuring competitive communities: An empirical study in ant communities. MS dissertation. University of Michigan.
dc.identifier.citedreferencePhilpott, S. M., Maldonado, J., Vandermeer, J., & Perfecto, I. ( 2004 ). Taking trophic cascades up a level: Behaviorally- modified effects of phorid flies on ants and ant prey in coffee agroecosystems. Oikos, 105 ( 1 ), 141 - 147. https://doi.org/10.1111/j.0030- 1299.2004.12889.x
dc.identifier.citedreferencePhilpott, S. M., Perfecto, I., & Vandermeer, J. ( 2006 ). Effects of management intensity and season on arboreal ant diversity and abundance in coffee agroecosystems. Biodiversity & Conservation, 15 ( 1 ), 139 - 155. https://doi.org/10.1007/s10531- 004- 4247- 2
dc.identifier.citedreferencePhilpott, S. M., Perfecto, I., Vandermeer, J., & Uno, S. ( 2009 ). Spatial scale and density dependence in a host parasitoid system: An arboreal ant, Azteca instabilis, and its Pseudacteon phorid parasitoid. Environmental Entomology, 38 ( 3 ), 790 - 796.
dc.identifier.citedreferencePlatner, C., Piñol, J., Sanders, D., & Espadaler, X. ( 2012 ). Trophic diversity in a Mediterranean food web- stable isotope analysis of an ant community of an organic citrus grove. Basic and Applied Ecology, 13 ( 7 ), 587 - 596. https://doi.org/10.1016/j.baae.2012.09.006
dc.identifier.citedreferencePowers, J. S., Montgomery, R. A., Adair, E. C., Brearley, F. Q., DeWalt, S. J., Castanho, C. T., - ¦ Lerdau, M. T. ( 2009 ). Decomposition in tropical forests: A pan- tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. Journal of Ecology, 97 ( 4 ), 801 - 811. https://doi.org/10.1111/j.1365- 2745.2009.01515.x
dc.identifier.citedreferencePrescott, C. E. ( 2010 ). Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry, 101 ( 1- 3 ), 133 - 149. https://doi.org/10.1007/s10533- 010- 9439- 0
dc.identifier.citedreferenceRico- Gray, V., García- Franco, J. G., Palacios- Rios, M., à z- Castelazo, C., Parra- Tabla, V., & Navarro, J. A. ( 1998 ). Geographical and Seasonal Variation in the Richness of Ant- Plant Interactions in México 1. Biotropica, 30 ( 2 ), 190 - 200.
dc.identifier.citedreferenceRivera- Salinas, I. S., Hajian- Forooshani, Z., Jiménez- Soto, E., Cruz- Rodríguez, J. A., & Philpott, S. M. ( 2018 ). High intermediary mutualist density provides consistent biological control in a tripartite mutualism. Biological Control, 118, 26 - 31. https://doi.org/10.1016/j.biocontrol.2017.12.002
dc.identifier.citedreferenceRoeder, K. A., & Kaspari, M. ( 2017 ). From cryptic herbivore to predator: Stable isotopes reveal consistent variability in trophic levels in an ant population. Ecology, 98 ( 2 ), 297 - 303. https://doi.org/10.1002/ecy.1641
dc.identifier.citedreferenceRomero- Alvarado, Y., Soto- Pinto, L., García- Barrios, L., & Barrera- Gaytán, J. F. ( 2002 ). Coffee yields and soil nutrients under the shades of Inga sp. vs. multiple species in Chiapas, Mexico. Agroforestry Systems, 54 ( 3 ), 215 - 224.
dc.identifier.citedreferenceSchmitt, L., Aponte- Rolón, B., & Perfecto, I. ( 2020 ). Data from: Evaluating community effects of a keystone ant, Azteca sericeasur, on Inga micheliana Leaf Litter Decomposition in a Shaded Coffee Agro- ecosystem. Dryad Digital Repository, https://doi.org/10.5061/dryad.4qrfj6q7k
dc.identifier.citedreferenceSchmitz, O. J. ( 2008 ). Effects of predator hunting mode on grassland ecosystem function. Science, 319 ( 5865 ), 952 - 954.
dc.identifier.citedreferenceSchmitz, O. J., Beckerman, A. P., & O- Brien, K. M. ( 1997 ). Behaviorally mediated trophic cascades: Effects of predation risk on food web interactions. Ecology, 78 ( 5 ), 1388 - 1399. https://doi.org/10.1890/0012- 9658(1997)078[1388:BMTCEO]2.0.CO;2
dc.identifier.citedreferenceSchmitz, O. J., Hawlena, D., & Trussell, G. C. ( 2010 ). Predator control of ecosystem nutrient dynamics. Ecology Letters, 13 ( 10 ), 1199 - 1209. https://doi.org/10.1111/j.1461- 0248.2010.01511.x
dc.identifier.citedreferenceSeastedt, T. R. ( 1984 ). The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29 ( 1 ), 25 - 46. https://doi.org/10.1146/annurev.en.29.010184.000325
dc.identifier.citedreferenceShukla, R. K., Singh, H., Rastogi, N., & Agarwal, V. M. ( 2013 ). Impact of abundant Pheidole ant species on soil nutrients in relation to the food biology of the species. Applied Soil Ecology, 71, 15 - 23. https://doi.org/10.1016/j.apsoil.2013.05.002
dc.identifier.citedreferenceTillberg, C. V., McCarthy, D. P., Dolezal, A. G., & Suarez, A. V. ( 2006 ). Measuring the trophic ecology of ants using stable isotopes. Insectes Sociaux, 53 ( 1 ), 65 - 69. https://doi.org/10.1007/s00040- 005- 0836- 7
dc.identifier.citedreferenceVandermeer, J., Perfecto, I., Nuñez, G. I., Phillpott, S., & Ballinas, A. G. ( 2002 ). Ants ( Azteca sp.) as potential biological control agents in shade coffee production in Chiapas, Mexico. Agroforestry Systems, 56 ( 3 ), 271 - 276.
dc.identifier.citedreferenceVandermeer, J., Perfecto, I., & Philpott, S. ( 2010 ). Ecological complexity and pest control in organic coffee production: Uncovering an autonomous ecosystem service. BioScience, 60 ( 7 ), 527 - 537. https://doi.org/10.1525/bio.2010.60.7.8
dc.identifier.citedreferenceVannette, R. L., Bichier, P., & Philpott, S. M. ( 2017 ). The presence of aggressive ants is associated with fewer insect visits to and altered microbe communities in coffee flowers. Basic and Applied Ecology, 20, 62 - 74. https://doi.org/10.1016/j.baae.2017.02.002
dc.identifier.citedreferenceWardle, D. A., Bonner, K. I., & Barker, G. M. ( 2002 ). Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16 ( 5 ), 585 - 595. https://doi.org/10.1046/j.1365- 2435.2002.00659.x
dc.identifier.citedreferenceWilson, E. O. ( 2005 ). Oribatid mite predation by small ants of the genus Pheidole. Insectes Sociaux, 52 ( 3 ), 263 - 265. https://doi.org/10.1007/s00040- 005- 0802- 4
dc.identifier.citedreferenceYang, X., Yang, Z., Warren, M. W., & Chen, J. ( 2012 ). Mechanical fragmentation enhances the contribution of Collembola to leaf litter decomposition. European Journal of Soil Biology, 53, 23 - 31. https://doi.org/10.1016/j.ejsobi.2012.07.006
dc.identifier.citedreferenceZhang, D., Hui, D., Luo, Y., & Zhou, G. ( 2008 ). Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. Journal of Plant Ecology, 1 ( 2 ), 85 - 93. https://doi.org/10.1093/jpe/rtn002
dc.identifier.citedreferenceAerts, R. ( 1997 ). Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: A triangular relationship. Oikos, 439 - 449. https://doi.org/10.2307/3546886
dc.identifier.citedreferenceAttignon, S. E., Weibel, D., Lachat, T., Sinsin, B., Nagel, P., & Peveling, R. ( 2004 ). Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin. Applied Soil Ecology, 27 ( 2 ), 109 - 124. https://doi.org/10.1016/j.apsoil.2004.05.003
dc.identifier.citedreferenceBlüthgen, N., Gebauer, G., & Fiedler, K. ( 2003 ). Disentangling a rainforest food web using stable isotopes: Dietary diversity in a species- rich ant community. Oecologia, 137 ( 3 ), 426 - 435. https://doi.org/10.1007/s00442- 003- 1347- 8
dc.identifier.citedreferenceBolton, B. ( 1994 ). Identification guide to the ant genera of the world. Cambridge: Harvard University Press.
dc.identifier.citedreferenceBradford, M. A., Tordoff, G. M., Eggers, T., Jones, T. H., & Newington, J. E. ( 2002 ). Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 99 ( 2 ), 317 - 323. https://doi.org/10.1034/j.1600- 0706.2002.990212.x
dc.identifier.citedreferenceCarter, D. O., Yellowlees, D., & Tibbett, M. ( 2007 ). Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften, 94 ( 1 ), 12 - 24. https://doi.org/10.1007/s00114- 006- 0159- 1
dc.identifier.citedreferenceClay, N. A., Lucas, J., Kaspari, M., & Kay, A. D. ( 2013 ). Manna from heaven: Refuse from an arboreal ant links aboveground and belowground processes in a lowland tropical forest. Ecosphere, 4 ( 11 ), 1 - 15. https://doi.org/10.1890/ES13- 00220.1
dc.identifier.citedreferenceDel Toro, I., Ribbons, R. R., & Ellison, A. M. ( 2015 ). Ant- mediated ecosystem functions on a warmer planet: Effects on soil movement, decomposition and nutrient cycling. Journal of Animal Ecology, 84 ( 5 ), 1233 - 1241. https://doi.org/10.1111/1365- 2656.12367
dc.identifier.citedreferenceEnnis, K. K. ( 2010 ). Ground- foraging ant diversity and the role of an aggressive ant (Azteca instabilis) in coffee agroecosystems. MSc Dissertation. University of Michigan.
dc.identifier.citedreferenceFernández, F. ( 2003 ). Introducción a las hormigas de la región Neotropical ( 398 pp). Bogotá: Instituto de investigación de recursos biológicos Alexander von Humboldt.
dc.identifier.citedreferenceGessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. ( 2010 ). Diversity meets decomposition. Trends in Ecology & Evolution, 25 ( 6 ), 372 - 380. https://doi.org/10.1016/j.tree.2010.01.010
dc.identifier.citedreferenceGonthier, D. J., Ennis, K. K., Philpott, S. M., Vandermeer, J., & Perfecto, I. ( 2013 ). Ants defend coffee from berry borer colonization. BioControl, 58 ( 6 ), 815 - 820. https://doi.org/10.1007/s10526- 013- 9541- z
dc.identifier.citedreferenceGonzález, G., & Seastedt, T. R. ( 2001 ). Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology, 82 ( 4 ), 955 - 964. https://doi.org/10.1890/0012- 9658(2001)082[0955:SFAPLD]2.0.CO;2
dc.identifier.citedreferenceGrossman, J. M., Sheaffer, C., Wyse, D., Bucciarelli, B., Vance, C., & Graham, P. H. ( 2006 ). An assessment of nodulation and nitrogen fixation in inoculated Inga oerstediana, a nitrogen- fixing tree shading organically grown coffee in Chiapas, Mexico. Soil Biology and Biochemistry, 38 ( 4 ), 769 - 784. https://doi.org/10.1016/j.soilbio.2005.07.009
dc.identifier.citedreferenceHanlon, R. D. G., & Anderson, J. M. ( 1979 ). The effects of Collembola grazing on microbial activity in decomposing leaf litter. Oecologia, 38 ( 1 ), 93 - 99. https://doi.org/10.1007/BF00347827
dc.identifier.citedreferenceSwift, M. J., Heal, O. W., & Anderson, J. ( 1979 ). Decomposition in terrestrial ecosystems (Vol. 5 ). Berkeley: Univ of California Press.
dc.identifier.citedreferenceHättenschwiler, S., & Gasser, P. ( 2005 ). Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences, 102 ( 5 ), 1519 - 1524. https://doi.org/10.1073/pnas.0404977102
dc.identifier.citedreferenceHättenschwiler, S., Tiunov, A. V., & Scheu, S. ( 2005 ). Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology Evolution and Systematics, 36, 191 - 218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932
dc.identifier.citedreferenceHawlena, D., Strickland, M. S., Bradford, M. A., & Schmitz, O. J. ( 2012 ). Fear of predation slows plant- litter decomposition. Science, 336 ( 6087 ), 1434 - 1438.
dc.identifier.citedreferenceHines, J., & Gessner, M. O. ( 2012 ). Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning. Journal of Animal Ecology, 81 ( 6 ), 1146 - 1153. https://doi.org/10.1111/j.1365- 2656.2012.02003.x
dc.identifier.citedreferenceHsieh, H. Y. ( 2015 ). Ecological impacts of a trait- mediated cascade. PhD dissertation. University of Michigan.
dc.identifier.citedreferenceHunter, M. D. ( 2016 ). The phytochemical landscape: Linking trophic interactions and nutrient dynamics ( 74 pp). Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceHunter, M. D., Adl, S., Pringle, C. M., & Coleman, D. C. ( 2003 ). Relative effects of macroinvertebrates and habitat on the chemistry of litter during decomposition. Pedobiologia, 47 ( 2 ), 101 - 115. https://doi.org/10.1078/0031- 4056- 00174
dc.identifier.citedreferenceHunter, M. D., Reynolds, B. C., Hall, M. C., & Frost, C. J. ( 2012 ). Effects of herbivores on ecosystem processes: The role of trait- mediated indirect effects. Trait mediated indirect interactions: Ecological and evolutionary perspectives (pp. 339 - 370 ). Cambridge, UK: Cambridge Univ Press.
dc.identifier.citedreferenceJha, S., Allen, D., Liere, H., Perfecto, I., & Vandermeer, J. ( 2012 ). Mutualisms and population regulation: Mechanism matters. PLoS One, 7 ( 8 ), e43510. https://doi.org/10.1371/journal.pone.0043510
dc.identifier.citedreferenceJimenez- Soto, E., Morris, J. R., Letourneau, D. K., & Philpott, S. M. ( 2019 ). Vegetation connectivity increases ant activity and potential for ant- provided biocontrol services in a tropical agroforest. Biotropica, 51 ( 1 ), 50 - 61. https://doi.org/10.1111/btp.12616
dc.identifier.citedreferenceKaspari, M., & Yanoviak, S. P. ( 2009 ). Biogeochemistry and the structure of tropical brown food webs. Ecology, 90 ( 12 ), 3342 - 3351. https://doi.org/10.1890/08- 1795.1
dc.identifier.citedreferenceKuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. ( 2017 ). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82 ( 13 ), 1 - 26.
dc.identifier.citedreferenceLavelle, P., Blanchart, E., Martin, A., Martin, S., & Spain, A. ( 1993 ). A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica, 25 ( 2 ), 130 - 150. https://doi.org/10.2307/2389178
dc.identifier.citedreferenceLawrence, K. L., & Wise, D. H. ( 2000 ). Spider predation on forest- floor Collembola and evidence for indirect effects on decomposition. Pedobiologia, 44 ( 1 ), 33 - 39. https://doi.org/10.1078/S0031- 4056(04)70026- 8
dc.identifier.citedreferenceLi, K., Vandermeer, J. H., & Perfecto, I. ( 2016 ). Disentangling endogenous versus exogenous pattern formation in spatial ecology: A case study of the ant Azteca sericeasur in southern Mexico. Royal Society Open Science, 3 ( 5 ), 160073.
dc.identifier.citedreferenceLivingston, G. F., White, A. M., & Kratz, C. J. ( 2008 ). Indirect interactions between ant- tended hemipterans, a dominant ant Azteca instabilis (Hymenoptera: Formicidae), and shade trees in a tropical agroecosystem. Environmental Entomology, 37 ( 3 ), 734 - 740. https://doi.org/10.1093/ee/37.3.734
dc.identifier.citedreferenceLongino, J. T. ( 2007 ). A taxonomic review of the genus Azteca (Hymenoptera: Formicidae) in Costa Rica and a global revision of the aurita group. Zootaxa, 1491 ( 1 ), 1 - 63. https://doi.org/10.11646/zootaxa.1491.1.1.
dc.identifier.citedreferenceMathis, K. A., Philpott, S. M., & Moreira, R. F. ( 2011 ). Parasite lost: Chemical and visual cues used by Pseudacteon in search of Azteca instabilis. Journal of Insect Behavior, 24 ( 3 ), 186 - 199. https://doi.org/10.1007/s10905- 010- 9247- 3
dc.identifier.citedreferenceMcGlynn, T. P., & Poirson, E. K. ( 2012 ). Ants accelerate litter decomposition in a Costa Rican lowland tropical rain forest. Journal of Tropical Ecology, 28 ( 5 ), 437 - 443. https://doi.org/10.1017/S0266467412000375
dc.identifier.citedreferenceMelillo, J. M., Aber, J. D., & Muratore, J. F. ( 1982 ). Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63 ( 3 ), 621 - 626. https://doi.org/10.2307/1936780
dc.identifier.citedreferenceMorris, J. R., Vandermeer, J., & Perfecto, I. ( 2015 ). A keystone ant species provides robust biological control of the coffee berry borer under varying pest densities. PLoS One, 10 ( 11 ), e0142850. https://doi.org/10.1371/journal.pone.0142850
dc.identifier.citedreferenceOksanen, J., Kindt, R., Legendre, P., O- Hara, B., Simpson, G. L., & Solymos, M. - ¦ Wagner, H. ( 2007 ). The vegan package. Community Ecology Package, 10, 631 - 637.
dc.identifier.citedreferenceOlson, J. S. ( 1963 ). Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44 ( 2 ), 322 - 331. https://doi.org/10.2307/1932179
dc.identifier.citedreferencePerfecto, I. ( 1994 ). Foraging behavior as a determinant of asymmetric competitive interaction between two ant species in a tropical agroecosystem. Oecologia, 98 ( 2 ), 184 - 192. https://doi.org/10.1007/BF00341471
dc.identifier.citedreferencePerfecto, I., Vandermeer, J., & Philpott, S. M. ( 2014 ). Complex ecological interactions in the coffee agroecosystem. Annual Review of Ecology, Evolution, and Systematics, 45, 137 - 158. https://doi.org/10.1146/annurev- ecolsys- 120213- 091923
dc.identifier.citedreferencePhilpott, S. M. ( 2005 ). Changes in arboreal ant populations following pruning of coffee shade- trees in Chiapas, Mexico. Agroforestry Systems, 64 ( 3 ), 219 - 224. https://doi.org/10.1007/s10457- 004- 2372- 2
dc.identifier.citedreferencePhilpott, S. M. ( 2010 ). A canopy dominant ant affects twig- nesting ant assembly in coffee agroecosystems. Oikos, 119 ( 12 ), 1954 - 1960. https://doi.org/10.1111/j.1600- 0706.2010.18430.x
dc.identifier.citedreferencePhilpott, S. M., & Armbrecht, I. ( 2006 ). Biodiversity in tropical agroforests and the ecological role of ants and ant diversity in predatory function. Ecological Entomology, 31 ( 4 ), 369 - 377. https://doi.org/10.1111/j.1365- 2311.2006.00793.x
dc.identifier.citedreferencePhilpott, S. M., & Bichier, P. ( 2012 ). Effects of shade tree removal on birds in coffee agroecosystems in Chiapas, Mexico. Agriculture, Ecosystems & Environment, 149, 171 - 180. https://doi.org/10.1016/j.agee.2011.02.015
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.