Show simple item record

Discovery of Mitochondrial Transcription Inhibitors Active in Pancreatic Cancer Cells

dc.contributor.authorChen, Wenmin
dc.contributor.authorHu, Shuai
dc.contributor.authorMao, Shuai
dc.contributor.authorXu, Yibin
dc.contributor.authorGuo, Hui
dc.contributor.authorLi, Haoxi
dc.contributor.authorPaulsen, Michelle T.
dc.contributor.authorChen, Xinde
dc.contributor.authorLjungman, Mats
dc.contributor.authorNeamati, Nouri
dc.date.accessioned2020-12-02T14:42:00Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:42:00Z
dc.date.issued2020-11-04
dc.identifier.citationChen, Wenmin; Hu, Shuai; Mao, Shuai; Xu, Yibin; Guo, Hui; Li, Haoxi; Paulsen, Michelle T.; Chen, Xinde; Ljungman, Mats; Neamati, Nouri (2020). "Discovery of Mitochondrial Transcription Inhibitors Active in Pancreatic Cancer Cells." ChemMedChem 15(21): 2029-2039.
dc.identifier.issn1860-7179
dc.identifier.issn1860-7187
dc.identifier.urihttps://hdl.handle.net/2027.42/163644
dc.description.abstractMitochondrial dysfunction is a hallmark of cancer cells and targeting cancer mitochondria has emerged as a promising anti‐cancer therapy. Previously, we repurposed chlorambucil by conjugating it to a mitochondrial targeting triphenylphosphonium (TPP) group to design Mito‐Chlor, a novel agent that acts on mitochondria DNA (mtDNA). Herein, we show that Mito‐Chlor, but not chlorambucil, inhibits the nascent transcription of mtDNA. Clustering analysis of transcriptomic profile of our Bru‐seq database led to the identification of another mitochondrial transcription inhibitor SQD1, which inhibits the proliferation of MIA PaCa‐2 cells with an IC50 of 1.3 μM. Interestingly, Mito‐Chlor reduces expression of mitochondrial proteins, interferes with mitochondria membrane potential, and impairs oxidative phosphorylation while SQD1 does not. Both compounds increased cellular and mitochondrial reactive oxygen species and stimulated similar signaling pathways in response to oxidative stress. As mitochondrial transcription inhibitors and redox modulators, SQD1 and Mito‐Chlor are promising for the treatment of pancreatic cancer by blocking mitochondrial function.Teamwork: Herein, we show that mitochondria‐targeting chlorambucil, Mito‐Chlor, efficiently inhibits the transcription of mitochondrial DNA. We also report the discovery of a novel mitochondria transcription inhibitor SQD1. These two compounds share a similar genome‐wide transcriptomic profile, and both induce mitochondrial superoxide and similar cell signaling pathways. This study supports targeting mitochondria as an efficient anticancer therapy.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherantitumor
dc.subject.othermitochondrial transcription
dc.subject.otherRNA
dc.subject.otherreactive oxygen species (ROS)
dc.subject.otherbru-seq
dc.titleDiscovery of Mitochondrial Transcription Inhibitors Active in Pancreatic Cancer Cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environmen
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163644/3/cmdc202000494_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163644/2/cmdc202000494.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163644/1/cmdc202000494-sup-0001-misc_information.pdfen_US
dc.identifier.doi10.1002/cmdc.202000494
dc.identifier.sourceChemMedChem
dc.identifier.citedreferenceP. Wardman, Free Radical Biol. Med. 2007, 43, 995 – 1022;
dc.identifier.citedreferenceZ. Zhang, L. Zhang, L. Zhou, Y. Lei, Y. Zhang, C. Huang, Redox biol. 2019, 25, 101047;
dc.identifier.citedreferenceJ. D. Malhotra, R. J. Kaufman, Antioxid. Redox Signaling 2007, 9, 2277 – 2294.
dc.identifier.citedreferenceM. H. Stipanuk, J. E. Dominy   Jr, J.-I. Lee, R. M. Coloso, J. Nutr. 2006, 136, 1652S - 1659S.
dc.identifier.citedreferenceG. Wu, Y.-Z. Fang, S. Yang, J. R. Lupton, N. D. Turner, J. Nutr. 2004, 134, 489 – 492.
dc.identifier.citedreferenceF. Z. Chakrama, S. Seguin-Py, J. N. Le Grand, A. Fraichard, R. Delage-Mourroux, G. Despouy, V. Perez, M. Jouvenot, M. Boyer-Guittaut, Autophagy 2010, 6, 495 – 505.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, J. P. Mesirov, Proc. Natl. Acad. Sci. USA 2005, 102, 15545 – 15550;
dc.identifier.citedreferenceV. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, P. Puigserver, E. Carlsson, M. Ridderstrale, E. Laurila, N. Houstis, M. J. Daly, N. Patterson, J. P. Mesirov, T. R. Golub, P. Tamayo, B. Spiegelman, E. S. Lander, J. N. Hirschhorn, D. Altshuler, L. C. Groop, Nat. Genet. 2003, 34, 267 – 273.
dc.identifier.citedreferenceS. B. Le, M. K. Hailer, S. Buhrow, Q. Wang, K. Flatten, P. Pediaditakis, K. C. Bible, L. D. Lewis, E. A. Sausville, Y.-P. Pang, J. Biol. Chem. 2007, 282, 8860 – 8872.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. Zlotkowski, W. M. Hewitt, P. Yan, H. R. Bokesch, M. L. Peach, M. C. Nicklaus, B. R. O′Keefe, J. B. McMahon, K. R. Gustafson, J. S. Schneekloth   Jr., Org. Lett. 2017, 19, 1726 – 1729;
dc.identifier.citedreferenceB. Marydasan, B. Madhuri, S. Cherukommu, J. Jose, M. Viji, S. C. Karunakaran, T. K. Chandrashekar, K. S. Rao, C. M. Rao, D. Ramaiah, J. Med. Chem. 2018, 61, 5009 – 5019.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. K. NaveenKumar, B. N. SharathBabu, M. Hemshekhar, K. Kemparaju, K. S. Girish, G. Mugesh, ACS Chem. Biol. 2018, 13, 1996 – 2002.
dc.identifier.citedreferenceG. Cheng, M. Zielonka, B. Dranka, S. N. Kumar, C. R. Myers, B. Bennett, A. M. Garces, L. G. Dias Duarte Machado, D. Thiebaut, O. Ouari, M. Hardy, J. Zielonka, B. Kalyanaraman, J. Biol. Chem. 2018, 293, 10363 – 10380.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Vierbuchen, E. Ling, C. J. Cowley, C. H. Couch, X. Wang, D. A. Harmin, C. W. M. Roberts, M. E. Greenberg, Mol. Cell. Biol. 2017, 68, 1067 – 1082 e1012;
dc.identifier.citedreferenceF. Bejjani, E. Evanno, K. Zibara, M. Piechaczyk, I. Jariel-Encontre, Biochim. Biophys. Acta Rev. Cancer 2019, 1872, 11 – 23.
dc.identifier.citedreferenceA. Loboda, M. Damulewicz, E. Pyza, A. Jozkowicz, J. Dulak, Cell. Mol. Life Sci. 2016, 73, 3221 – 3247.
dc.identifier.citedreferenceB. Y. Shin, S. H. Jin, I. J. Cho, S. H. Ki, Free Radical Biol. Med. 2012, 53, 834 – 841.
dc.identifier.citedreferenceY. Yang, S. Karakhanova, W. Hartwig, J. G. D′Haese, P. P. Philippov, J. Werner, A. V. Bazhin, J. Cell. Physiol. 2016, 231, 2570 – 2581.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. D. Georgakopoulos, G. Wells, M. Campanella, Nat. Chem. Biol. 2017, 13, 136 – 146;
dc.identifier.citedreferenceS. Pickles, P. Vigie, R. J. Youle, Curr. Biol. 2018, 28, R170 – R185.
dc.identifier.citedreference 
dc.identifier.citedreferenceV. A. Bohr, Free Radical Biol. Med. 2002, 32, 804 – 812;
dc.identifier.citedreferenceF. M. Yakes, B. Van Houten, Proc. Natl. Acad. Sci. USA 1997, 94, 514 – 519.
dc.identifier.citedreferenceS. D. Cline, Biochim. Biophys. Acta Gene Regul. Mech. 2012, 1819, 979 – 991.
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceD. C. Wallace, Nat. Rev. Cancer 2012, 12, 685 – 698;
dc.identifier.citedreferenceP. E. Porporato, N. Filigheddu, J. M. B. Pedro, G. Kroemer, L. Galluzzi, Cell Res. 2018, 28, 265 – 280;
dc.identifier.citedreferenceS. Vyas, E. Zaganjor, M. C. Haigis, Cell 2016, 166, 555 – 566.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. G. Vander Heiden, L. C. Cantley, C. B. Thompson, Science 2009, 324, 1029 – 1033;
dc.identifier.citedreferenceP. E. Porporato, R. K. Dadhich, S. Dhup, T. Copetti, P. Sonveaux, Front. Pharmacol. 2011, 2, 49;
dc.identifier.citedreferenceC. E. Griguer, C. R. Oliva, Curr. Pharm. Des. 2011, 17, 2421 – 2427.
dc.identifier.citedreferenceC. T. Moraes, S. Srivastava, I. Kirkinezos, J. Oca-Cossio, M. Woischnick, F. Diaz, Int. Rev. Neurobiol. 2002, 53, 3 – 23.
dc.identifier.citedreferenceE. Benbrik, P. Chariot, S. Bonavaud, M. Ammi-Saïd, E. Frisdal, C. Rey, R. Gherardi, G. Barlovatz-Meimon, J. Neurol. Sci. 1997, 149, 19 – 25.
dc.identifier.citedreferenceE. Segal-Bendirdjian, D. Coulaud, B. P. Roques, J.-B. Le Pecq, Cancer Res. 1988, 48, 4982 – 4992.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. T. Madak, N. Neamati, Curr. Top. Med. Chem. 2015, 15, 745 – 766;
dc.identifier.citedreferenceJ. Zielonka, J. Joseph, A. Sikora, M. Hardy, O. Ouari, J. Vasquez-Vivar, G. Cheng, M. Lopez, B. Kalyanaraman, Chem. Rev. 2017, 117, 10043 – 10120.
dc.identifier.citedreferenceM. Millard, J. D. Gallagher, B. Z. Olenyuk, N. Neamati, J. Med. Chem. 2013, 56, 9170 – 9179.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. A. Tapia, Y. Prieto, G. Zamora, A. Morello, Y. Repetto, Heterocycl. Commun. 2000, 6, 539 – 544;
dc.identifier.citedreferenceR. Cassis, R. Tapia, J. A. Valderrama, Synth. Commun. 1985, 15, 125 – 133.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. T. Paulsen, A. Veloso, J. Prasad, K. Bedi, E. A. Ljungman, B. Magnuson, T. E. Wilson, M. Ljungman, Methods 2014, 67, 45 – 54;
dc.identifier.citedreferenceS. Hu, Y. Jin, Y. Liu, M. Ljungman, N. Neamati, Eur. J. Med. Chem. 2018, 158, 884 – 895.
dc.identifier.citedreferenceC. M. Gustafsson, M. Falkenberg, N. G. Larsson, Annu. Rev. Biochem. 2016, 85, 133 – 160.
dc.identifier.citedreferenceN. Sharma, M. S. Pasala, A. Prakash, Environ. Mol. Mutagen. 2019, 60, 668 – 682.
dc.identifier.citedreferenceV. M. Gohil, S. A. Sheth, R. Nilsson, A. P. Wojtovich, J. H. Lee, F. Perocchi, W. Chen, C. B. Clish, C. Ayata, P. S. Brookes, V. K. Mootha, Nat. Biotechnol. 2010, 28, 249 – 255.
dc.identifier.citedreferenceM. S. Kane, A. Paris, P. Codron, J. Cassereau, V. Procaccio, G. Lenaers, P. Reynier, A. Chevrollier, Biochem. Pharmacol. 2018, 148, 100 – 110.
dc.identifier.citedreferenceR. Gozzelino, V. Jeney, M. P. Soares, Annu. Rev. Pharmacol. Toxicol. 2010, 50, 323 – 354.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.