Show simple item record

Angular Dependence and Spatial Distribution of Jupiter’s Centimeter‐Wave Thermal Emission From Juno’s Microwave Radiometer

dc.contributor.authorOyafuso, Fabiano
dc.contributor.authorLevin, Steven
dc.contributor.authorOrton, Glenn
dc.contributor.authorBrown, Shannon T.
dc.contributor.authorAdumitroaie, Virgil
dc.contributor.authorJanssen, Michael
dc.contributor.authorWong, Michael H.
dc.contributor.authorFletcher, Leigh N.
dc.contributor.authorSteffes, Paul
dc.contributor.authorLi, Cheng
dc.contributor.authorGulkis, Samuel
dc.contributor.authorAtreya, Sushil
dc.contributor.authorMisra, Sidharth
dc.contributor.authorBolton, Scott
dc.date.accessioned2020-12-02T14:42:10Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2020-12-02T14:42:10Z
dc.date.issued2020-11
dc.identifier.citationOyafuso, Fabiano; Levin, Steven; Orton, Glenn; Brown, Shannon T.; Adumitroaie, Virgil; Janssen, Michael; Wong, Michael H.; Fletcher, Leigh N.; Steffes, Paul; Li, Cheng; Gulkis, Samuel; Atreya, Sushil; Misra, Sidharth; Bolton, Scott (2020). "Angular Dependence and Spatial Distribution of Jupiter’s Centimeter‐Wave Thermal Emission From Juno’s Microwave Radiometer." Earth and Space Science 7(11): n/a-n/a.
dc.identifier.issn2333-5084
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/2027.42/163647
dc.description.abstractNASA’s Juno spacecraft has been monitoring Jupiter in 53‐day orbits since 2016. Its six‐frequency microwave radiometer (MWR) is designed to measure black body emission from Jupiter over a range of pressures from a few tenths of a bar to several kilobars in order to retrieve details of the planet’s atmospheric composition, in particular, its ammonia and water abundances. A key step toward achieving this goal is the determination of the latitudinal dependence of the nadir brightness temperature and limb darkening of Jupiter’s thermal emission through a deconvolution of the measured antenna temperatures. We present a formulation of the deconvolution as an optimal estimation problem. It is demonstrated that a quadratic expression is sufficient to model the angular dependence of the thermal emission for the data set used to perform the deconvolution. Validation of the model and results from a subset of orbits favorable for MWR measurements is presented over a range of latitudes that cover up to 60° from the equator. A heuristic algorithm to mitigate the effects of nonthermal emission is also described.Plain Language SummaryOne of the instruments on the Juno spacecraft that is currently orbiting Jupiter every 53 days is the microwave radiometer (MWR). It has been sensing the atmosphere for the first time over a wide range of depths below the top‐most clouds, covering pressures from less than the Earth’s surface pressure to several thousand times that value. This enables a deeper exploration than ever before of how winds distribute gases that can condense, such as water (as in the Earth’s atmosphere) and ammonia (which forms Jupiter’s highest level clouds). One challenge in understanding the MWR data is to convert each of its raw measurements into an estimate of the true brightness temperature of Jupiter as though it were observed in a perfect, narrow beam, a process known as a deconvolution. We determined that this correction for the angular dependence can be done reliably with a three‐term (quadratic) expression. The results of this approach have formed the basis of all of the analysis of MWR data to date, and we show some of the intriguing results from orbits that allowed for the best MWR observing geometry over latitudes that cover up to 60° from the equator.Key PointsA method to deconvolve Jupiter’s thermal emission measured by the Juno microwave radiometer is presented and validatedDeconvolved nadir brightness temperatures and limb darkening results are presented for Juno observations between July 2016 and April 2018
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherlimb darkening
dc.subject.otherJupiter
dc.subject.otherJuno
dc.subject.othergiant planets
dc.subject.otherdeconvolution
dc.subject.othermicrowave radiometer
dc.titleAngular Dependence and Spatial Distribution of Jupiter’s Centimeter‐Wave Thermal Emission From Juno’s Microwave Radiometer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelSpace Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163647/5/ess2682-sup-0001-2020EA001254-SI.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163647/4/ess2682-sup-0003-2020EA001254-fs02.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163647/3/ess2682_am.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163647/2/ess2682-sup-0002-2020EA001254-fs01.pdfen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163647/1/ess2682.pdfen_US
dc.identifier.doi10.1029/2020EA001254
dc.identifier.sourceEarth and Space Science
dc.identifier.citedreferenceLi, C., Ingersoll, A., Janssen, M., Levin, S., Bolton, S., Adumitroaie, V., Allison, M., Arballo, J., Bellotti, A., Brown, S., Ewald, S., Jewell, L., Misra, S., Orton, G., Oyafuso, F., Steffes, P., & Williamson, R. ( 2017 ). The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophysical Research Letters, 44, 5317 – 5325. https://doi.org/10.1002/2017GL073159
dc.identifier.citedreferenceBolton, S., Janssen, M., Thorne, R., Levin, S., Klein, M., Gulkis, S., Bastian, T., Sault, R., Elachi, C., Hofstadter, M., Bunker, A., Dulk, G., Gudim, E., Hamilton, G., Johnson, W. T. K., Leblanc, Y., Liepack, O., McLeod, R., Roller, J., Roth, L., & West, R. ( 2002 ). Ultra‐relativistic electrons in Jupiter’s radiation belts. Nature, 415, 987 – 991. https://doi.org/10.1038/415987a
dc.identifier.citedreferenceBrown, S., Janssen, M., Adumitroaie, V., Atreya, S., Bolton, S., Gulkis, S., Ingersoll, A., Levin, S., Li, C., Li, L., Lunine, J., Misra, S., Orton, G., Steffes, P., Tabataba‐Vakili, F., Kolmašová, I., Imai, M., Santolík, O., Kurth, W., Hospodarsky, G., Gurnett, D., & Connerney, J. ( 2018 ). Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature, 558, 87 – 90. https://doi.org/10.1038/s41586‐018‐0156‐5
dc.identifier.citedreferenceClaret, A. ( 2000 ). A new non‐linear limb‐darkening law for LTE stellar atmosphere models. Astronomy and Astrophysics, 363, 1081 – 1190.
dc.identifier.citedreferenceConnerney, J., Kotsiaros, S., Oliversen, R., Espley, J., Joergensen, J., Joergensen, P., Merayo, J. M. G., Herceg, M., Bloxham, J., Moore, K. M., Bolton, S. J., & Levin, S. ( 2018 ). A new model of Jupiter’s magnetic field from Juno’s first nine orbits. Geophysical Research Letters, 45, 2590 – 2596. https://doi.org/10.1002/2018GL077312
dc.identifier.citedreferencede Pater, I. ( 2006 ). Technical report: Jupiter’s synchrotron radiation. Synchrotron Radiation News, 5, 12 – 17. https://doi.org/10.1080/08940880600978689
dc.identifier.citedreferencede Pater, I., Sault, R. J., Butler, B., DeBoer, D., & Wong, M. H. ( 2016 ). Peering through Jupiter’s clouds with radio spectral imaging. Science, 352 ( 6290 ), 1198 – 1201. https://doi.org/10.1126/science.aaf2210
dc.identifier.citedreferencede Pater, I., Sault, R. J., Moeckel, C., Moullet, A., Wong, M. H., Goullaud, C., DeBoer, D., Butler, B., Bjoraker, G., Adamkovics, M., Cosentino, R., Donnelly, P. T., Fletcher, L. N., Kasaba, Y., Orton, G., Rogers, J., Sinclair, J., & Villard, E. ( 2019 ). First ALMA millimeter‐wavelength maps of Jupiter, with a multiwavelength study of convection. The Astronomical Journal, 158 ( 4 ), 139. https://doi.org/10.3847/1538‐3881/ab3643
dc.identifier.citedreferenceFletcher, L. N., Greathouse, T., Orton, G., Sinclair, J., Giles, R., Irwin, P., & Encrenaz, T. ( 2016 ). Mid‐infrared mapping of Jupiter’s temperatures, aerosol opacity and chemical distributions with IRTF/TEXES. Icarus, 278, 128 – 161. https://doi.org/10.1016/j.icarus.2016.06.008
dc.identifier.citedreferenceFletcher, L. N., Kaspi, Y., Guillot, T., & Showman, A. P. ( 2020 ). How well do we understand the belt/zone circulation of giant planet atmospheres? Space Science Reviews, 216, 30. https://doi.org/10.1007/s11214‐019‐0631‐9
dc.identifier.citedreferenceFletcher, L. N., Orton, G., Greathouse, T., Rogers, J., Zhang, Z., Oyafuso, F., Eichstödt, G., Melin, H., Li, C., Levin, S. M., Bolton, S., Janssen, M., Mettig, H.‐J., Grassi, D., Mura, A., & Adriani, A. ( 2020 ). Jupiter’s equatorial plumes and hotspots: Spectral mapping from Gemini/TEXES and Juno/MWR. Journal of Geophysical Research: Planets, 125, e2020JE006399. https://doi.org/10.1029/2020JE006399
dc.identifier.citedreferenceGautier, D., Hersant, F., Mousis, O., & Lunine, J. I. ( 2008 ). Enrichments in volatiles in jupiter: A new interpretation of the galileo measurements. The Astrophysical Journal Letters, 550, L227. https://doi.org/10.1086/319648
dc.identifier.citedreferenceGórski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., & Bartelmann, M. ( 2005 ). Healpix: A framework for high‐resolution discretization and fast analysis of data distributed on the sphere. The Astrophysical Journal, 622, 759 – 771. https://doi.org/10.1086/427976
dc.identifier.citedreferenceHansen, P., & O’Leary, D. ( 1993 ). The use of the l‐curve in the regularization of discrete ill posed problems. SIAM Journal of Scientific Computing, 14, 1487 – 1503.
dc.identifier.citedreferenceHelled, R., & Lunine, J. ( 2014 ). Measuring Jupiter’s water abundance by Juno: the link between interior and formation models. Monthly Notices of the Royal Astronomical Society, 441 ( 3 ), 2273 – 2279. https://doi.org/10.1093/mnras/stu516
dc.identifier.citedreferenceHeyrovský, D. ( 2007 ). Computing limb‐darkening coefficients from stellar atmospheres. Astrophysical Journal, 656, 483 – 492. https://doi.org/10.1086/509566
dc.identifier.citedreferenceHodges, A., Steffes, P., Bellotti, A., Waite, J., Brown, S., Oyafuso, F., Orton, G., Arballo, J., Gladstone, G. R., Levin, S., & Bolton, S. ( 2020 ). Observations and electron density retrievals of Jupiter’s discrete auroral arcs using the juno microwave radiometer. Journal of Geophysical Research: Planets, 125, e2019JE006293. https://doi.org/10.1029/2019JE006293
dc.identifier.citedreferenceJanssen, M. ( 1993 ). An introduction to the passive microwave sensing of atmospheres. In Atmospheric remote sensing by microwave radiometry. New York, NY: Wiley‐Interscience Publication.
dc.identifier.citedreferenceJanssen, M., Hofstadter, M., Gulkis, S., Ingersoll, A., Allison, M., Bolton, S., Levin, S. M., & Kamp, L. A. ( 2005 ). Microwave remote sensing of Jupiter’s atmosphere from an orbiting spacecraft. Icarus, 173, 447 – 453. https://doi.org/10.1016/j.icarus.2004.08.012
dc.identifier.citedreferenceJanssen, M., Oswald, J. E., Brown, S. T., Gulkis, S., Levin, S. M., Bolton, S. J., Allison, M. D., Atreya, S. K., Gautier, D., Ingersoll, A. P., Lunine, J. I., Orton, G. S., Owen, T. C., Steffes, P. G., Adumitroaie, V., Bellotti, A., Jewell, L. A., Li, C., Li, L., Misra, S., Oyafuso, F. A., Santos‐Costa, D., Sarkissian, E., Williamson, R., Arballo, J. K., Kitiyakara, A., Ulloa‐Severino, A., Chen, J. C., Maiwald, F. W., Sahakian, A. S., Pingree, P. J., Lee, K. A., Mazer, A. S., Redick, R., Hodges, R. E., Hughes, R. C., Bedrosian, G., Dawson, D. E., Hatch, W. A., Russell, D. S., Chamberlain, N. F., Zawadski, M. S., Khayatian, B., Franklin, B. R., Conley, H. A., Kempenaar, J. G., Loo, M. S., Sunada, E. T., Vorperion, V., & Wang, C. C. ( 2017 ). MWR: Microwave radiometer for the Juno mission to Jupiter. Space Science Reviews, 213, 139 – 185. https://doi.org/10.1007/s11214‐017‐0349‐5
dc.identifier.citedreferenceKarpowicz, B. M., & Steffes, P. G. ( 2011a ). Corrigendum to “In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated Jovian conditions” [Icarus 212 (2011) 210–223]. Icarus, 214 ( 2 ), 783. https://doi.org/10.1016/j.icarus.2011.06.002
dc.identifier.citedreferenceKarpowicz, B. M., & Steffes, P. G. ( 2011b ). In search of water vapor on Jupiter: Laboratory measurements of the microwave properties of water vapor under simulated Jovian conditions. Icarus, 212 ( 1 ), 210 – 223. https://doi.org/10.1016/j.icarus.2010.11.035
dc.identifier.citedreferenceLevin, S. M., Bolton, S. J., Gulkis, S. L., Klein, M. J., Bhattacharya, B., & Thorne, R. M. ( 2001 ). Modeling Jupiter’s synchrotron radiation. Geophysical Research Letters, 28, 903 – 906. https://doi.org/10.1029/2000GL012087
dc.identifier.citedreferenceLi, C., Ingersoll, A., Bolton, S., Levin, S., Janssen, M., Atreya, S., Lunine, J., Steffes, P., Brown, S., Guillot, T., Allison, M., Arballo, J., Bellotti, A., Adumitroaie, V., Gulkis, S., Hodges, A., Li, L., Misra, S., Orton, G., Oyafuso, F., Santos‐Costa, D., Waite, H., & Bolton, S. J. ( 2020 ). The water abundance in Jupiter’s equatorial zone. Nature Astronomy, 4, 2397 – 3366. https://doi.org/10.1038/s41550‐020‐1009‐3
dc.identifier.citedreferenceMousis, O., Lunine, J., Madhusudhan, N., & Johnson, T. ( 2012 ). Nebular water depletion as the cause of Jupiter’s low oxygen abundance. The Astrophysical Journal Letters, 751, L7. https://doi.org/10.1088/2041‐8205/751/1/L7
dc.identifier.citedreferenceOwen, T., Mahaffy, P., Niemann, H. B., Atreya, S., Donahue, T., Bar‐Nun, A., & de Pater, I. ( 1999 ). A low‐temperature origin for the planetesimals that formed Jupiter. Nature, 402, 269 – 270. https://doi.org/10.1038/46232
dc.identifier.citedreferenceRodgers, C. ( 2000 ). Inverse methods for atmospheric sounding—Theory and practice. Singapore: World Scientific. https://doi.org/10.1142/9789812813718
dc.identifier.citedreferenceSantos‐Costa, D., Adumitroaie, V., Ingersoll, A., Gulkis, S., Janssen, M. A., Levin, S., & Connerney, J. ( 2017 ). First look at Jupiter’s synchrotron emission from Juno’s perspective. Geophysical Research Letters, 44, 8676 – 8684. https://doi.org/10.1002/2017GL072836
dc.identifier.citedreferenceSantos‐Costa, D., & Bolton, S. J. ( 2008 ). Discussing the processes constraining the Jovian synchrotron radio emission’s features. Planetary and Space Science, 56, 326 – 345. https://doi.org/10.1016/j.pss.2007.09.008
dc.identifier.citedreferenceSeiff, A., Kirk, D., Knight, T., Young, R., Mihalov, J., Young, L., Mihalov, J. D., Young, L. A., Milos, F. S., Schubert, G., Blanchard, R. C., & Atkinson, D. ( 1998 ). Thermal structure of Jupiter’s atmosphere near the edge of a 5  μ m hot spot in the north equatorial belt. Journal of Geophysical Research, 103, 22,857 – 22,889. https://doi.org/10.1029/98JE01766
dc.identifier.citedreferenceSimon, A., Wong, M., & Orton, G. ( 2015 ). First results from the hubble opal program: Jupiter in 2015. The Astrophysical Journal, 812, 55. https://doi.org/10.1088/0004‐637X/812/1/55
dc.identifier.citedreferenceSimon‐Miller, A. A., Conrath, B. J., Gierasch, P. J., Orton, G. S., Achterberg, R. K., Flasar, F. M., & Fisher, B. M. ( 2006 ). Jupiter’s atmospheric temperatures: From voyager IRIS to Cassini CIRS. Icarus, 180 ( 1 ), 98 – 112. https://doi.org/10.1016/j.icarus.2005.07.019
dc.identifier.citedreferenceTarantola, A. ( 2005 ). Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics https://doi.org/10.1137/1.9780898717921
dc.identifier.citedreferenceWeidenschilling, S., & Lewis, J. ( 1973 ). Atmospheric and cloud structures of the Jovian planets. Icarus, 20, 465 – 476. https://doi.org/10.1016/0019‐1035(73)90019‐5
dc.identifier.citedreferenceWong, M., Lunine, J., Sudhir, A., Johnson, T., Mahaffy, P., & Owen, T. ( 2008 ). Oxygen and other volatiles in the giant planets and their satellites. Reviews in Mineralogy and Geochemistry ‐ Rev Mineral Geochem, 68, 219 – 246. https://doi.org/10.2138/rmg.2008.68.10
dc.identifier.citedreferenceWong, M. H., Simon, A. A., Tollefson, J. W., de Pater, I., Barnett, M. N., Hsu, A. I., Stephens, A. W., Orton, G. S., Fleming, S. W., Goullaud, C., Januszewski, W., Roman, A., Bjoraker, G. L., Atreya, S. K., Adriani, A., & Fletcher, L. N. ( 2020 ). High‐resolution UV/optical/IR imaging of Jupiter in 2016–2019. The Astrophysical Journal Supplement Series, 247 ( 2 ), 58. https://doi.org/10.3847/1538‐4365/ab775f
dc.identifier.citedreferenceZhang, Z., Adumitroaie, V., Allison, M., Arballo, J., Atreya, S., Bjoraker, G., Bolton, S., Brown, S., Fletcher, L. N., Guillot, T., Gulkis, S., Hodges, A., Ingersoll, A., Janssen, M., Levin, S., Li, C., Li, L., Lunine, J., Misra, S., Orton, G., Oyafuso, F., Steffes, P., & Wong, M. H. ( 2020 ). Residual study: Testing Jupiter atmosphere models against Juno MWR observations. Earth and Space Science, 7, e2020EA001229. https://doi.org/10.1029/2020EA001229
dc.identifier.citedreferenceActon, C. ( 1996 ). Ancillary data services of NASA’s navigation and ancillary information facility. Planetary and Space Science, 44, 65 – 70. https://doi.org/10.1016/0032‐0633(95)00107‐7
dc.identifier.citedreferenceActon, C., Bachman, N., Semenov, B., & Wright, E. ( 2018 ). A look toward the future in the handling of space science mission geometry. Planetary and Space Science, 150, 9 – 12. https://doi.org/10.1016/j.pss.2017.02.013
dc.identifier.citedreferenceAdumitroaie, V., Levin, S., Santos‐Costa, D., Gulkis, S., & Janssen, M. ( 2016 ). Towards a fast background radiation subtraction technique for the juno mission. 2016 IEEE Aerospace Conference, 1 – 11. https://doi.org/10.1109/AERO.2016.7500862
dc.identifier.citedreferenceAsplund, M., Grevesse, N., Sauval, A. J., & Scott, P. ( 2009 ). The chemical composition of the Sun. Annual Review of Astronomy and Astrophysics, 47 ( 1 ), 481 – 522. https://doi.org/10.1146/annurev.astro.46.060407.145222
dc.identifier.citedreferenceAtreya, S. K., Crida, A., Guillot, T., Lunine, J. I., Madhusudhan, N., & Mousis, O. ( 2019 ). The origin and evolution of Saturn, with exoplanet perspective. In K. H. Baines, F. M. Flasar, N. Krupp, T. Stallard (Eds.), Saturn in the 21st century (pp. 5 – 43 ). Cambridge, England: Cambridge University Press. https://doi.org/10.1017/9781316227220.002
dc.identifier.citedreferenceBackus, G., & Gilbert, F. ( 1968 ). The resolving power of gross earth data. Geophysical Journal International, 16 ( 2 ), 169 – 205. https://doi.org/10.1111/j.1365‐246X.1968.tb00216.x
dc.identifier.citedreferenceBackus, G., Gilbert, F., & Bullard, E. C. ( 1970 ). Uniqueness in the inversion of inaccurate gross earth data. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 266 ( 1173 ), 123 – 192. https://doi.org/10.1098/rsta.1970.0005
dc.identifier.citedreferenceBellotti, A. ( 2018 ). Jupiter: A study of atmospheric composition, structure, and dynamics using microwave techniques (Unpublished doctoral dissertation), Georgia Institute of Technology.
dc.identifier.citedreferenceBellotti, A., Steffes, P. G., & Chinsomboom, G. ( 2016 ). Laboratory measurements of the 5–20 cm wavelength opacity of ammonia, water vapor, and methane under simulated conditions for the deep jovian atmosphere. Icarus, 280, 255 – 267. MicroMars to MegaMars https://doi.org/10.1016/j.icarus.2016.07.013
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.