Show simple item record

Analysis of time‐to‐event for observational studies: Guidance to the use of intensity models

dc.contributor.authorKragh Andersen, Per
dc.contributor.authorPohar Perme, Maja
dc.contributor.authorHouwelingen, Hans C.
dc.contributor.authorCook, Richard J.
dc.contributor.authorJoly, Pierre
dc.contributor.authorMartinussen, Torben
dc.contributor.authorTaylor, Jeremy M. G.
dc.contributor.authorAbrahamowicz, Michal
dc.contributor.authorTherneau, Terry M.
dc.date.accessioned2021-01-05T18:44:51Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:44:51Z
dc.date.issued2021-01-15
dc.identifier.citationKragh Andersen, Per; Pohar Perme, Maja; Houwelingen, Hans C.; Cook, Richard J.; Joly, Pierre; Martinussen, Torben; Taylor, Jeremy M. G.; Abrahamowicz, Michal; Therneau, Terry M. (2021). "Analysis of time‐to‐event for observational studies: Guidance to the use of intensity models." Statistics in Medicine 40(1): 185-211.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/163800
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otherprediction
dc.subject.otherSTRATOS initiative
dc.subject.othersurvival analysis
dc.subject.othertime‐dependent covariates
dc.subject.otherimmortal time bias
dc.subject.otherhazard function
dc.subject.otherCox regression model
dc.subject.othercensoring
dc.subject.othermultistate model
dc.titleAnalysis of time‐to‐event for observational studies: Guidance to the use of intensity models
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163800/1/sim8757.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163800/2/SIM_8757_intensity_supplement.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163800/3/sim8757_am.pdf
dc.identifier.doi10.1002/sim.8757
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceKeogh RH, Seaman SR, Barrett JK, Taylor‐Robinson D, Szczesniak R. Dynamic prediction of survival in cystic fibrosis: a landmarking analysis using UK patient registry data. Epidemiology. 2019; 30 ( 1 ): 29 ‐ 37.
dc.identifier.citedreferenceAbrahamowicz M, MacKenzie TA. Joint estimation of time‐dependent and non‐linear effects of continuous covariates on survival. Stat Med. 2007; 26: 392 ‐ 408.
dc.identifier.citedreferenceWynant W, Abrahamowicz M. Impact of the model‐building strategy on inference about nonlinear and time‐dependent covariate effects in survival analysis. Stat Med. 2014; 33 ( 19 ): 3318 ‐ 3337. https://doi.org/10.1002/sim.6178.
dc.identifier.citedreferenceSchmoor C, Schumacher M. Effects of covariate omission and categorization when analysing randomized trials with the Cox model. Stat Med. 1997; 16 ( 3 ): 225 ‐ 237.
dc.identifier.citedreferenceBretagnolle J, Huber‐Carol C. Effects of omitting covariates in Cox’s model for survival data. Scand J Stat. 1988; 15: 125 ‐ 138.
dc.identifier.citedreferenceStruthers CA, Kalbfleisch JD. Misspecified proportional hazards models. Biometrika. 1986; 74 ( 2 ): 363 ‐ 369.
dc.identifier.citedreferenceHernán MA. The hazards of hazard ratios. Epidemiology. 2010; 21 ( 1 ): 13 ‐ 15.
dc.identifier.citedreferenceAalen OO, Cook RJ, Røysland K. Does Cox analysis of a randomized survival study yield a causal treatment effect? Lifetime Data Anal. 2015; 21 ( 4 ): 579 ‐ 593.
dc.identifier.citedreferenceMartinussen T, Vansteelandt S, Andersen PK. Subtleties in the interpretation of hazard ratios. Lifetime Data Anal. 2020; 26: 833 ‐ 855. https://doi.org/10.1007/s10985‐020‐09501‐5.
dc.identifier.citedreferenceCrowley JJ, Hu M. Covariance analysis of heart transplant survival data. J Am Stat Assoc. 1977; 72: 27 ‐ 36.
dc.identifier.citedreferenceClark DA, Stinson EB, Griepp RB, Schroeder JS, Shumway NE, Harrison DC. Cardiac transplantation in man. Ann Intern Med. 1971; 75 ( 1 ): 15 ‐ 21.
dc.identifier.citedreferenceRedmond C, Fisher B, Wieand HS. The methodologic dilemma in retrospectively correlating the amount of chemotherapy received in adjuvant therapy protocols with disease‐free survival. Cancer Treat Rep. 1983; 67: 519 ‐ 526.
dc.identifier.citedreferenceBonadonna G, Valagussa P. Dose‐response effect of adjuvant chemotherapy in breast cancer. N Engl J Med. 1981; 304 ( 1 ): 10 ‐ 15.
dc.identifier.citedreferenceVan Houwelingen HC, Putter H. Comparison of stopped Cox regression with direct methods such as pseudo‐values and binomial regression. Lifetime Data Anal. 2015; 21 ( 2 ): 180 ‐ 196.
dc.identifier.citedreferenceAndersen PK, Perme MP. Pseudo‐observations in survival analysis. Stat Methods Med Res. 2010; 19 ( 1 ): 71 ‐ 99.
dc.identifier.citedreferenceVan Houwelingen HC. Dynamic prediction by landmarking in event history analysis. Scand J Stat. 2007; 34 ( 1 ): 70 ‐ 85.
dc.identifier.citedreferenceJewell NP, Nielsen JP. A framework for consistent prediction rules based on markers. Biometrika. 1993; 80 ( 1 ): 153 ‐ 164.
dc.identifier.citedreferenceSuresh K, Taylor JMG, Spratt DE, Daignault S, Tsodikov A. Comparison of joint modeling and landmarking for dynamic prediction under an illness‐death model. Biom J. 2017; 59 ( 6 ): 1277 ‐ 1300.
dc.identifier.citedreferenceKessing LV, Søndergaard L, Forman JL, Andersen PK. Lithium treatment and risk of dementia. Arch Gen Psychiatry. 2008; 65: 1331 ‐ 1335.
dc.identifier.citedreferenceRizopoulos D. Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data. Biometrics. 2011; 67 ( 3 ): 819 ‐ 829.
dc.identifier.citedreferenceFine JP, Gray RJA. Proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999; 94 ( 446 ): 496 ‐ 509. https://doi.org/10.1080/01621459.1999.10474144.
dc.identifier.citedreferenceRubin DB. Causal inference using potential outcomes: design, modeling. Decis J Am Stat Assoc. 2005; 100 ( 469 ): 322 ‐ 331.
dc.identifier.citedreferenceGoetghebeur E, le Cessie S, De Stavola B, Moodie E, Waernbaum I. Formulating causal questions and principled statistical answers. Statistics in Medicine. 2020. http://dx.doi.org/10.1002/sim.8741.
dc.identifier.citedreferenceHernán MA, Robins JM. Causal Inference: What If. Boca Raton, FL: Chapman & Hall/CRC Press; 2020.
dc.identifier.citedreferenceChen PY, Tsiatis AA. Causal inference on the difference of the restricted mean lifetime between two groups. Biometrics. 2001; 57 ( 4 ): 1030 ‐ 1038.
dc.identifier.citedreferenceDaniel RM, Cousens S, De Stavola B, Kenward MG, Sterne J. Methods for dealing with time‐dependent confounding. Stat Med. 2013; 32 ( 9 ): 1584 ‐ 1618.
dc.identifier.citedreferenceBlinc A, Kozak M, Šabovič M, et al. Survival and event‐free survival of patients with peripheral arterial disease undergoing prevention of cardiovascular disease. Int Angiol. 2017; 35: 216 ‐ 227.
dc.identifier.citedreferenceBlinc A, Kozak M, Šabovič M, et al. Prevention of ischemic events in patients with peripheral arterial disease – design, baseline characteristics and 2‐year results an observational study. Int Angiol. 2011; 30: 555 ‐ 566.
dc.identifier.citedreferencePuri P, Sanyal AJ. Nonalcoholic fatty liver disease: definitions, risk factors and workup. Clin Liver Dis. 2012; 1: 99 ‐ 103.
dc.identifier.citedreferenceTapper EB, Loomba R. Nonalcoholic fatty liver disease, metabolic syndrome, and the fight that will define clinical practice for a generation of hepatologists. Hepatology. 2018; 67: 1657 ‐ 1659.
dc.identifier.citedreferenceAllen AM, Therneau TM, Larson JJ, Coward A, Somers VK, Kamath PS. Nonalcoholic fatty liver disease incidence and impact on metabolic burden and death: a 20 year community study. Hepatology. 2018; 67: 1726 ‐ 1736.
dc.identifier.citedreferenceSt Sauver JL, Grossardt BR, Yawn BP, et al. Data resource profile: the Rochester epidemiology project (REP) medical records‐linkage system. Int J Epidemiol. 2012; 41 ( 6 ): 1614 ‐ 1624. https://doi.org/10.1093/ije/dys195.
dc.identifier.citedreferenceVan Houwelingen HC, Putter H. Dynamic Prediction in Clinical Survival Analysis. Boca Raton, FL: CRC Press; 2012.
dc.identifier.citedreferenceCook RJ, Lawless JF. Multistate Models for the Analysis of Life History Data. Boca Raton, FL: Chapman & Hall/CRC Press; 2018.
dc.identifier.citedreferenceHougaard P. Analysis of Multivariate Survival Data. New York, NY: Springer; 2000.
dc.identifier.citedreferencePerme MP, Stare J, Estève J. On estimation in relative survival. Biometrics. 2012; 68 ( 1 ): 113 ‐ 120.
dc.identifier.citedreferenceAltman DG, De Stavola BL, Love SB, Stepniewska KA. Review of survival analyses published in cancer journals. Br J Cancer. 1995; 72 ( 2 ): 511 ‐ 518.
dc.identifier.citedreferenceSauerbrei W, Abrahamowicz M, Altman DG, le Cessie S, Carpenter J, STRATOS Initiative. STRengthening analytical thinking for observational studies: the STRATOS initiative. Stat Med. 2014; 33 ( 30 ): 5413 ‐ 5432. https://doi.org/10.1002/sim.6265.
dc.identifier.citedreferenceSuissa S. Immortal time bias in pharmacoepidemiology. Am J Epidemiol. 2007; 167 ( 4 ): 492 ‐ 499.
dc.identifier.citedreferenceAnderson JR, Cain KC, Gelber RD. Analysis of survival by tumor response. J Clin Oncol. 1983; 1 ( 11 ): 710 ‐ 719.
dc.identifier.citedreferenceKeiding N. Delayed entry. Encyclopedia of Biostatistics. Hoboken, NJ: John Wiley & Sons, Ltd; 2005.
dc.identifier.citedreferenceAndersen PK, Geskus RB, Witte DT, Putter H. Competing risks in epidemiology: possibilities and pitfalls. Int J Epidemiol. 2012; 41 ( 3 ): 861 ‐ 870.
dc.identifier.citedreferenceAndersen PK, Borgan Ø, Gill RD, Keiding N. Statistical Models Based on Counting Processes. New York, NY: Springer; 1993.
dc.identifier.citedreferenceCook RJ, Lawless JF. The Statistical Analysis of Recurrent Events. New York, NY: Springer; 2007.
dc.identifier.citedreferenceCox DR. Regression models and life‐tables. J Royal Stat Soc Ser B (Methodol). 1972; 34 ( 2 ): 187 ‐ 220.
dc.identifier.citedreferenceBreslow NE. Covariance analysis of censored survival data. Biometrics. 1974; 30: 89 ‐ 99.
dc.identifier.citedreferenceKalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Hoboken, NJ: John Wiley & Sons, Inc; 2002.
dc.identifier.citedreferenceCox DR. Partial likelihood. Biometrika. 1975; 62: 269 ‐ 276.
dc.identifier.citedreferenceAndersen PK, Gill RD. Cox’s regression model for counting processes: a large sample study. Ann Stat. 1982; 10 ( 4 ): 1100 ‐ 1120.
dc.identifier.citedreferenceClayton DG, Hills M. Statistical Models in Epidemiology. Oxford, UK: Oxford University Press; 1993.
dc.identifier.citedreferenceJoly P, Commenges D, Letenneur L. A penalized likelihood approach for arbitrarily censored and truncated data: application to age‐specific incidence of dementia. Biometrics. 1998; 54: 185 ‐ 194.
dc.identifier.citedreferenceRoyston P, Lambert PC. Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model. College Station, TX: Stata Press; 2011.
dc.identifier.citedreferenceAalen OO. A linear regression model for the analysis of life times. Stat Med. 1989; 8 ( 8 ): 907 ‐ 925. https://doi.org/10.1002/sim.4780080803.
dc.identifier.citedreferenceLin DY, Ying Z. Semiparametric analysis of the additive risk model. Biometrika. 1994; 81 ( 1 ): 61 ‐ 71. https://doi.org/10.1093/biomet/81.1.61.
dc.identifier.citedreferenceMartinussen T, Scheike TH. Dynamic Regression Models for Survival Data. New York, NY: Springer; 2007.
dc.identifier.citedreferenceAalen O, Borgan Ø, Gjessing H. Survival and Event History Analysis: A Process Point of View. New York, NY: Springer; 2008.
dc.identifier.citedreferenceWei LJ. The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis. Stat Med. 1992; 11: 1871 ‐ 1879.
dc.identifier.citedreferenceKeiding N, Andersen PK, Klein JP. The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates. Stat Med. 1997; 16 ( 2 ): 215 ‐ 224. https://doi.org/10.1002/(SICI)1097‐0258(19970130)16:2<215::AID‐SIM481>3.0.CO;2‐J.
dc.identifier.citedreferenceBycott P, Taylor JMG. A comparison of smoothing techniques for CD4 data measured with error in a time‐dependent Cox proportional hazards model. Stat Med. 1998; 17 ( 18 ): 2061 ‐ 2077.
dc.identifier.citedreferenceAndersen PK, Liestøl K. Attenuation caused by infrequently updated covariates in survival analysis. Biostatistics. 2003; 4 ( 4 ): 633 ‐ 649.
dc.identifier.citedreferencede Bruijne MH, le Cessie S, Kluin‐Nelemans HC, van Houwelingen HC. On the use of Cox regression in the presence of an irregularly observed time‐dependent covariate. Stat Med. 2001; 20 ( 24 ): 3817 ‐ 3829.
dc.identifier.citedreferenceWulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997; 53: 330 ‐ 339.
dc.identifier.citedreferenceTsiatis AA, Davidian M. Joint modeling of longitudinal and time‐to‐event data: an overview. Stat Sin. 2004; 4 ( 3 ): 809 ‐ 834.
dc.identifier.citedreferenceHorwitz RI, Feinstein AR. The problem of “protopathic bias” in case‐control studies. Am J Med. 1980; 68 ( 2 ): 255 ‐ 258.
dc.identifier.citedreferenceGasparrini A. Modeling exposure–lag–response associations with distributed lag non‐linear models. Stat Med. 2014; 33 ( 5 ): 881 ‐ 899.
dc.identifier.citedreferenceSylvestre MP, Abrahamowicz M. Flexible modeling of the cumulative effects of time‐dependent exposures on the hazard. Stat Med. 2009; 28 ( 27 ): 3437 ‐ 3453.
dc.identifier.citedreferenceTherneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New York, NY: Springer; 2000.
dc.identifier.citedreferenceLin DY, Wei LJ, Ying Z. Checking the Cox model with cumulative sums of martingale‐based residuals. Biometrika. 1993; 80 ( 3 ): 557 ‐ 572. https://doi.org/10.1093/biomet/80.3.557.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.