Show simple item record

Murine Norovirus: Propagation, Quantification, and Genetic Manipulation

dc.contributor.authorHwang, Seungmin
dc.contributor.authorAlhatlani, Bader
dc.contributor.authorArias, Armando
dc.contributor.authorCaddy, Sarah L.
dc.contributor.authorChristodoulou, Constantina
dc.contributor.authorBragazzi Cunha, Juliana
dc.contributor.authorEmmott, Ed
dc.contributor.authorGonzalez‐hernandez, Marta
dc.contributor.authorKolawole, Abimbola
dc.contributor.authorLu, Jia
dc.contributor.authorRippinger, Christine
dc.contributor.authorSorgeloos, Frédéric
dc.contributor.authorThorne, Lucy
dc.contributor.authorVashist, Surender
dc.contributor.authorGoodfellow, Ian
dc.contributor.authorWobus, Christiane E.
dc.date.accessioned2021-01-05T18:45:15Z
dc.date.available2021-01-05T18:45:15Z
dc.date.issued2014-05
dc.identifier.citationHwang, Seungmin; Alhatlani, Bader; Arias, Armando; Caddy, Sarah L.; Christodoulou, Constantina; Bragazzi Cunha, Juliana; Emmott, Ed; Gonzalez‐hernandez, Marta ; Kolawole, Abimbola; Lu, Jia; Rippinger, Christine; Sorgeloos, Frédéric ; Thorne, Lucy; Vashist, Surender; Goodfellow, Ian; Wobus, Christiane E. (2014). "Murine Norovirus: Propagation, Quantification, and Genetic Manipulation." Current Protocols in Microbiology 33(1): 15K.2.1-15K.2.61.
dc.identifier.issn1934-8525
dc.identifier.issn1934-8533
dc.identifier.urihttps://hdl.handle.net/2027.42/163819
dc.description.abstractMurine norovirus (MNV) is a positive- sense, plus- stranded RNA virus in the Caliciviridae family. It is the most common pathogen in biomedical research colonies. MNV is also related to the human noroviruses, which cause the majority of nonbacterial gastroenteritis worldwide. Like the human noroviruses, MNV is an enteric virus that replicates in the intestine and is transmitted by the fecal- oral route. MNV replicates in murine macrophages and dendritic cells in cells in culture and in the murine host. This virus is often used to study mechanisms in norovirus biology, because human noroviruses are refractory to growth in cell culture. MNV combines the availability of a cell culture and reverse genetics system with the ability to study infection in the native host. Herein, we describe a panel of techniques that are commonly used to study MNV biology. Curr. Protoc. Microbiol 33:15K.2.1- 15K.2.61. © 2014 by John Wiley & Sons, Inc.
dc.publisherWiley Periodicals, Inc.
dc.publisherLippincott Williams & Wilkins
dc.subject.othermurine norovirus
dc.subject.otherquantification
dc.subject.otherpurification
dc.subject.othertransfection
dc.subject.otherreverse genetics
dc.titleMurine Norovirus: Propagation, Quantification, and Genetic Manipulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163819/1/cpmc15k02.pdf
dc.identifier.doi10.1002/9780471729259.mc15k02s33
dc.identifier.sourceCurrent Protocols in Microbiology
dc.identifier.citedreferenceThackray, L.B., Wobus, C.E., Chachu, K.A., Liu, B., Alegre, E.R., Henderson, K.S., Kelley, S.T., and Virgin, H.W. IV 2007. Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J. Virol. 81: 10460 - 10473.
dc.identifier.citedreferenceKitajima, M., Oka, T., Tohya, Y., Katayama, H., Takeda, N., and Katayama, K. 2009. Development of a broadly reactive nested reverse transcription- PCR assay to detect murine noroviruses, and investigation of the prevalence of murine noroviruses in laboratory mice in Japan. Microbiol. Immunol. 53: 531 - 534.
dc.identifier.citedreferenceLindenbach, B.D. 2009. Measuring HCV infectivity produced in cell culture and in vivo. Methods Mol. Biol. 510: 329 - 336.
dc.identifier.citedreferenceLutfalla, G. and Uze, G. 2006. Performing quantitative reverse- transcribed polymerase chain reaction experiments. Methods Enzymol. 410: 386 - 400.
dc.identifier.citedreferenceMadore, H.P., Treanor, J.J., and Dolin, R. 1986. Characterization of the Snow Mountain agent of viral gastroenteritis. J. Virol. 58: 487 - 492.
dc.identifier.citedreferenceMahler, M. and Kohl, W. 2009. A serological survey to evaluate contemporary prevalence of viral agents and Mycoplasma pulmonis in laboratory mice and rats in western Europe. Lab. Anim. 38: 161 - 165.
dc.identifier.citedreferenceMikeska, T. and Dobrovic, A. 2009. Validation of a primer optimisation matrix to improve the performance of reverse transcription- quantitative real- time PCR assays. BMC Res. Notes 2: 112.
dc.identifier.citedreferenceMumphrey, S.M., Changotra, H., Moore, T.N., Heimann- Nichols, E.R., Wobus, C.E., Reilly, M.J., Moghadamfalahi, M., Shukla, D., and Karst, S.M. 2007. Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1- dependent interferon responses. J. Virol. 81: 3251 - 3263.
dc.identifier.citedreferenceNeumann, E., Schaefer- Ridder, M., Wang, Y., and Hofschneider, P.H. 1982. Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J. 1: 841 - 845.
dc.identifier.citedreferenceParwani, A.V., Saif, L.J., and Kang, S.Y. 1990. Biochemical characterization of porcine enteric calicivirus: Analysis of structural and nonstructural viral proteins. Arch. Virol. 112: 41 - 53.
dc.identifier.citedreferencePhelan, M.C. 2006. Techniques for mammalian cell tissue culture. Curr. Protoc. Mol. Biol. 74: A.3F.1 - A.3F.18.
dc.identifier.citedreferencePiche, C. and Schernthaner, J.P. 2003. Background priming during reverse transcription by oligo(dT) carried over from mRNA isolation. Biotechniques 34: 720 - 722, 724.
dc.identifier.citedreferenceReed, L.J. and Muench, H. 1938. A simple method of estimating fifty per cent endpoints. Am. J. Hygiene 27: 493 - 497.
dc.identifier.citedreferenceRuiz, S., Beauvillain, C., Mevelec, M.N., Roingeard, P., Breton, P., Bout, D., and Dimier- Poisson, I. 2005. A novel CD4- CD8alpha+CD205+CD11b- murine spleen dendritic cell line: Establishment, characterization and functional analysis in a model of vaccination to toxoplasmosis. Cell Microbiol. 7: 1659 - 1671.
dc.identifier.citedreferenceSmith, D.B., McFadden, N., Blundell, R.J., Meredith, A., and Simmonds, P. 2012. Diversity of murine norovirus in wild- rodent populations: Species- specific associations suggest an ancient divergence. J. Gen. Virol. 93: 259 - 266.
dc.identifier.citedreferenceSomogyi, P., Frazier, J., and Skinner, M.A. 1993. Fowlpox virus host range restriction: Gene expression, DNA replication, and morphogenesis in nonpermissive mammalian cells. Virology 197: 439 - 444.
dc.identifier.citedreferenceStahlberg, A., Kubista, M., and Pfaffl, M. 2004. Comparison of reverse transcriptases in gene expression analysis. Clin. Chem. 50: 1678 - 1680.
dc.identifier.citedreferenceStanley, E.R., Guilbert, L.J., Tushinski, R.J., and Bartelmez, S.H. 1983. CSF- 1- a mononuclear phagocyte lineage- specific hemopoietic growth factor. J. Cell Biochem. 21: 151 - 159.
dc.identifier.citedreferenceTakeshita, S., Kaji, K., and Kudo, A. 2000. Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J. Bone Miner. Res. 15: 1477 - 1488.
dc.identifier.citedreferenceTaube, S., Perry, J.W., Yetming, K., Patel, S.P., Auble, H., Shu, L., Nawar, H.F., Lee, C.H., Connell, T.D., Shayman, J.A., and Wobus, C.E. 2009. Ganglioside- linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses. J. Virol. 83: 4092 - 4101.
dc.identifier.citedreferenceTimofeeva, A.V. and Skrypina, N.A. 2001. Background activity of reverse transcriptases. Biotechniques 30: 22 - 24, 26, 28.
dc.identifier.citedreferenceTsunesumi, N., Sato, G., Iwasa, M., Kabeya, H., Maruyama, S., and Tohya, Y. 2012. Novel murine norovirus- like genes in wild rodents in Japan. J. Vet. Med. Sci. 74: 1221 - 1224.
dc.identifier.citedreferenceTuiskunen, A., Leparc- Goffart, I., Boubis, L., Monteil, V., Klingstrom, J., Tolou, H.J., Lundkvist, A., and Plumet, S. 2010. Self- priming of reverse transcriptase impairs strand- specific detection of dengue virus RNA. J. Gen. Virol. 91: 1019 - 1027.
dc.identifier.citedreferenceVashist, S., Urena, L., Chaudhry, Y., and Goodfellow, I. 2012a. Identification of RNA- protein interaction networks involved in the norovirus life cycle. J. Virol. 86: 11977 - 11990.
dc.identifier.citedreferenceVashist, S., Urena, L.,and Goodfellow, I. 2012b. Development of a strand specific real- time RT- qPCR assay for the detection and quantitation of murine norovirus RNA. J. Virol. Methods 184: 69 - 76.
dc.identifier.citedreferenceVoytas, D. 2000. Agarose gel electrophoresis. Curr. Protoc. Mol. Biol. 51: 10.4.1 - 10.4.8.
dc.identifier.citedreferenceWard, V.K., McCormick, C.J., Clarke, I.N., Salim, O., Wobus, C.E., Thackray, L.B., Virgin, H.W. IV, and Lambden, P.R. 2007. Recovery of infectious murine norovirus using pol II- driven expression of full- length cDNA. Proc. Natl. Acad. Sci. U.S.A. 104: 11050 - 11055.
dc.identifier.citedreferenceWobus, C.E., Karst, S.M., Thackray, L.B., Chang, K.O., Sosnovtsev, S.V., Belliot, G., Krug, A., Mackenzie, J.M., Green, K.Y., and Virgin, H.W. 2004. Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol. 2: e432.
dc.identifier.citedreferenceWobus, C.E., Thackray, L.B., and Virgin, H.W. IV. 2006. Murine norovirus: A model system to study norovirus biology and pathogenesis. J. Virol. 80: 5104 - 5112.
dc.identifier.citedreferenceXu, J. 2005. Preparation, culture, and immortalization of mouse embryonic fibroblasts. Curr. Protoc. Mol. Biol. 70: 28.1.1 - 28.1.8.
dc.identifier.citedreferenceYunus, M.A., Chung, L.M., Chaudhry, Y., Bailey, D., and Goodfellow, I. 2010. Development of an optimized RNA- based murine norovirus reverse genetics system. J. Virol. Methods 169: 112 - 118.
dc.identifier.citedreferenceZumstein, L. 1998. Dialysis and ultrafiltration. Curr. Protoc. Mol. Biol. 41: A.3C.1 - A.3C.7.
dc.identifier.citedreferencehttp://www.bio- protocol.org/wenzhang.aspx?id=415
dc.identifier.citedreferencehttp://www.jove.com/video/4145/reverse- genetics- mediated- recovery- of- infectious- murine- norovirus
dc.identifier.citedreferencehttp://www.lindenbachlab.org/resources.html
dc.identifier.citedreferencehttp://www.jove.com/video/4297/plaque- assay- for- murine- norovirus
dc.identifier.citedreferencehttp://www.endmemo.com/bio/dnacopynum.php
dc.identifier.citedreferenceArias, A., Bailey, D., Chaudhry, Y., and Goodfellow, I. 2012. Development of a reverse- genetics system for murine norovirus 3: Long- term persistence occurs in the caecum and colon. J. Gen. Virol. 93: 1432 - 1441.
dc.identifier.citedreferenceBlasi, E., Barluzzi, R., Bocchini, V., Mazzolla, R., and Bistoni, F. 1990. Immortalization of murine microglial cells by a v- raf/v- myc carrying retrovirus. J. Neuroimmunol. 27: 229 - 237.
dc.identifier.citedreferenceBocchini, V., Mazzolla, R., Barluzzi, R., Blasi, E., Sick, P., and Kettenmann, H. 1992. An immortalized cell line expresses properties of activated microglial cells. J. Neurosci. Res. 31: 616 - 621.
dc.identifier.citedreferenceBritton, P., Green, P., Kottier, S., Mawditt, K.L., Penzes, Z., Cavanagh, D., and Skinner, M.A. 1996. Expression of bacteriophage T7 RNA polymerase in avian and mammalian cells by a recombinant fowlpox virus. J. Gen. Virol. 77: 963 - 967.
dc.identifier.citedreferenceBustin, S.A., Benes, V., Garson, J.A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M.W., Shipley, G.L., Vandesompele, J., and Wittwer, C.T. 2009. The MIQE guidelines: Minimum information for publication of quantitative real- time PCR experiments. Clin. Chem. 55: 611 - 622.
dc.identifier.citedreferenceButtigieg, K., Laidlaw, S.M., Ross, C., Davies, M., Goodbourn, S., and Skinner, M.A. 2013. Genetic screen of a library of chimeric poxviruses identifies an ankyrin repeat protein involved in resistance to the avian type I interferon response. J. Virol. 87: 5028 - 5040.
dc.identifier.citedreferenceChachu, K.A., Strong, D.W., LoBue, A.D., Wobus, C.E., Baric, R.S., and Virgin, H.W. IV. 2008. Antibody is critical for the clearance of murine norovirus infection. J. Virol. 82: 6610 - 6617.
dc.identifier.citedreferenceChaudhry, Y., Skinner, M.A., and Goodfellow, I.G. 2007. Recovery of genetically defined murine norovirus in tissue culture by using a fowlpox virus expressing T7 RNA polymerase. J. Gen. Virol. 88: 2091 - 2100.
dc.identifier.citedreferenceCox, C., Cao, S., and Lu, Y. 2009. Enhanced detection and study of murine norovirus- 1 using a more efficient microglial cell line. Virol. J. 6: 196.
dc.identifier.citedreferenceGallagher, S.R. 2011. Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. Curr. Protoc. Mol. Biol. 93: A.3D.1 - A.3D.14.
dc.identifier.citedreferenceGallagher, S., Winston, S.E., Fuller, S.A. and Hurrell, J.G.R. 2008. Immunoblotting and immunodetection. Curr. Protoc. Mol. Biol. 83: 10.8.1 - 10.8.28.
dc.identifier.citedreferenceGeissler, K., Parrish, C.R., Schneider, K., and Truyen, U. 1999. Feline calicivirus capsid protein expression and self- assembly in cultured feline cells. Vet. Microbiol. 69: 63 - 66.
dc.identifier.citedreferenceGonzalez- Hernandez, M.B., Bragazzi Cunha, J., and Wobus, C.E. 2012. Plaque assay for murine norovirus. J. Vis. Exp. 66: e4297.
dc.identifier.citedreferenceGreen, K.Y. 2007. Caliciviridae. In Fields Virology ( D.M. Knipe and P.M. Howley, eds.) pp. 949 - 980. Lippincott Williams & Wilkins, Philadelphia.
dc.identifier.citedreferenceHiguchi, R., Dollinger, G., Walsh, P.S., and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413 - 417.
dc.identifier.citedreferenceHsu, C.C., Wobus, C.E., Steffen, E.K., Riley, L.K., and Livingston, R.S. 2005. Development of a microsphere- based serologic multiplexed fluorescent immunoassay and a reverse transcriptase PCR assay to detect murine norovirus 1 infection in mice. Clin. Diagn. Lab. Immunol. 12: 1145 - 1151.
dc.identifier.citedreferenceHwang, S., Maloney, N.S., Bruinsma, M.W., Goel, G., Duan, E., Zhang, L., Shrestha, B., Diamond, M.S., Dani, A., Sosnovtsev, S.V., Green, K.Y., Lopez- Otin, C., Xavier, R.J., Thackray, L.B., and Virgin, H.W. 2012. Nondegradative role of Atg5- Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 11: 397 - 409.
dc.identifier.citedreferenceKarst, S.M., Wobus, C.E., Lay, M., Davidson, J., and Virgin, H.W. IV. 2003. STAT1- dependent innate immunity to a Norwalk- like virus. Science 299: 1575 - 1578.
dc.identifier.citedreferenceKim, J.A., Cho, K., Shin, M.S., Lee, W.G., Jung, N., Chung, C., and Chang, J.K. 2008. A novel electroporation method using a capillary and wire- type electrode. Biosens. Bioelectron. 23: 1353 - 1360.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.