Show simple item record

Risk for infantile spasms after acute symptomatic neonatal seizures

dc.contributor.authorGlass, Hannah C.
dc.contributor.authorGrinspan, Zachary M.
dc.contributor.authorLi, Yi
dc.contributor.authorMcNamara, Nancy A.
dc.contributor.authorChang, Taeun
dc.contributor.authorChu, Catherine J.
dc.contributor.authorMassey, Shavonne L.
dc.contributor.authorAbend, Nicholas S.
dc.contributor.authorLemmon, Monica E.
dc.contributor.authorThomas, Cameron
dc.contributor.authorMcCulloch, Charles E.
dc.contributor.authorShellhaas, Renée A.
dc.date.accessioned2021-01-05T18:45:22Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2021-01-05T18:45:22Z
dc.date.issued2020-12
dc.identifier.citationGlass, Hannah C.; Grinspan, Zachary M.; Li, Yi; McNamara, Nancy A.; Chang, Taeun; Chu, Catherine J.; Massey, Shavonne L.; Abend, Nicholas S.; Lemmon, Monica E.; Thomas, Cameron; McCulloch, Charles E.; Shellhaas, Renée A. (2020). "Risk for infantile spasms after acute symptomatic neonatal seizures." Epilepsia 61(12): 2774-2784.
dc.identifier.issn0013-9580
dc.identifier.issn1528-1167
dc.identifier.urihttps://hdl.handle.net/2027.42/163824
dc.description.abstractObjectiveInfantile spasms (IS) is a severe epilepsy in early childhood. Early treatment of IS provides the best chance of seizure remission and favorable developmental outcome. We aimed to develop a prediction rule to accurately predict which neonates with acute symptomatic seizures will develop IS.MethodsWe used data from the Neonatal Seizure Registry, a prospective, multicenter cohort of infants with acute symptomatic neonatal seizures born from July 2015 to March 2018. Neonates with acute symptomatic seizures who received clinical electroencephalography (EEG) and magnetic resonance imaging (MRI) and were younger than 2 years of age at the time of enrollment were included. We evaluated the association of neonatal EEG, MRI, and clinical factors with subsequent IS using bivariate analysis and best subsets logistic regression. We selected a final model through a consensus process that balanced statistical significance with clinical relevance.ResultsIS developed in 12 of 204 infants (6%). Multiple potential predictors were associated with IS, including Apgar scores, EEG features, seizure characteristics, MRI abnormalities, and clinical status at hospital discharge. The final model included three risk factors: (a) severely abnormal EEG or ≥3 days with seizures recorded on EEG, (b) deep gray or brainstem injury on MRI, and (c) abnormal tone on discharge exam. The stratified risk of IS was the following: no factors 0% (0/82, 95% confidence interval [CI] 0%‐4%), one or two factors 4% (4/108, 95% CI 1%‐9%), and all three factors 57% (8/14, 95% CI 29%‐83%).SignificanceIS risk after acute symptomatic neonatal seizures can be stratified using commonly available clinical data. No child without risk factors, vs >50% of those with all three factors, developed IS. This risk prediction rule may be valuable for clinical counseling as well as for selecting participants for clinical trials to prevent post‐neonatal epilepsy. This tailored approach may lead to earlier diagnosis and treatment and improve outcomes for a devastating early life epilepsy.
dc.publisherCroom Helm
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEEG
dc.subject.otherMRI
dc.subject.otherneonatal seizures
dc.subject.otherinfantile spasms
dc.titleRisk for infantile spasms after acute symptomatic neonatal seizures
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163824/1/epi16749.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163824/2/epi16749_am.pdf
dc.identifier.doi10.1111/epi.16749
dc.identifier.sourceEpilepsia
dc.identifier.citedreferenceNevalainen P, Metsäranta M, Toiviainen‐Salo S, Marchi V, Mikkonen K, Vanhatalo S, et al. Neonatal neuroimaging and neurophysiology predict infantile onset epilepsy after perinatal hypoxic ischemic encephalopathy. Seizure. 2020; 80: 249 – 56.
dc.identifier.citedreferenceFox CK, Glass HC, Sidney S, Smith SE, Fullerton HJ. Neonatal seizures triple the risk of a remote seizure after perinatal ischemic stroke. Neurology. 2016; 86 ( 23 ): 2179 – 86.
dc.identifier.citedreferenceRonen GM, Buckley D, Penney S, Streiner DL. Long‐term prognosis in children with neonatal seizures: a population based study. Neurology. 2007; 69: 1816 – 22.
dc.identifier.citedreferenceKnupp KG, Coryell J, Nickels KC, et al. Response to treatment in a prospective national infantile spasms cohort. Ann Neurol. 2016; 79: 475 – 84.
dc.identifier.citedreferenceEisermann MM, DeLaRaillere A, Dellatolas G, et al. Infantile spasms in Down syndrome–effects of delayed anticonvulsive treatment. Epilepsy Res. 2003; 55 ( 1–2 ): 21 – 7.
dc.identifier.citedreferenceGoh S, Kwiatkowski DJ, Dorer DJ, Thiele EA. Infantile spasms and intellectual outcomes in children with tuberous sclerosis complex. Neurology. 2005; 65 ( 2 ): 235 – 8.
dc.identifier.citedreferenceWidjaja E, Go C, McCoy B, Snead OC. Neurodevelopmental outcome of infantile spasms: a systematic review and meta‐analysis. Epilepsy Res. 2015; 109: 155 – 62.
dc.identifier.citedreferenceOc FJ, Lux AL, Darke K, et al. The effect of lead time to treatment and of age of onset on developmental outcome at 4 years in infantile spasms: evidence from the United Kingdom Infantile Spasms Study. Epilepsia. 2011; 52 ( 7 ): 1359 – 64.
dc.identifier.citedreferenceShellhaas RA, Chang T, Tsuchida T, et al. The American Clinical Neurophysiology Society’s Guideline on Continuous Electroencephalography Monitoring in Neonates. J Clin Neurophysiol. 2011; 28 ( 6 ): 611 – 7.
dc.identifier.citedreferenceTsuchida TN, Wusthoff CJ, Shellhaas RA, Abend NS, Hahn CD, Sullivan JE, et al. American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee. J Clin Neurophysiol. 2013; 30 ( 2 ): 161 – 73.
dc.identifier.citedreferenceShellhaas RA, Gallagher PR, Clancy RR. Assessment of neonatal electroencephalography (EEG) background by conventional and two amplitude‐integrated EEG classification systems. J Pediatr. 2008; 153 ( 3 ): 369 – 74.
dc.identifier.citedreferenceGrinspan ZM, Patel AD, Hafeez B, Abramson EL, Kern LM. Predicting frequent emergency department use among children with epilepsy: a retrospective cohort study using electronic health data from 2 centers. Epilepsia. 2018; 59 ( 1 ): 155 – 69.
dc.identifier.citedreferenceMcFadden D. Quantitative methods for analysing travel behaviour of individuals: some recent developments. London, UK: Croom Helm; 1979.
dc.identifier.citedreferenceRoyston P, Sauerbrei W. Bootstrap assessment of the stability of multivariable models. Stata J. 2009; 9 ( 4 ): 547 – 70.
dc.identifier.citedreferenceR Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R‐project.org/. Published 2013. Accessed April 6, 2020
dc.identifier.citedreferencevan Buuren S, Groothuis‐Oudshoom K. mice: multivariate Imputation by Chained Equations in R. J Stat Softw. 2011; 45 ( 3 ): 67.
dc.identifier.citedreferenceAbu Dhais F, McNamara B, O’Mahony O, McSweeney N, Livingstone V, Murray DM, et al. Impact of therapeutic hypothermia on infantile spasms: an observational cohort study. Dev Med Child Neurol. 2020; 62 ( 1 ): 62 – 8.
dc.identifier.citedreferenceShellhaas RA, Chang T, Tsuchida T, et al. The American Clinical Neurophysiology Society’s Guideline on continuous electroencephalography monitoring in neonates. J Clin Neurophysiol. 2011; 28 ( 6 ): 611 – 7.
dc.identifier.citedreferenceBarkovich AJ, Hajnal BL, Vigneron D, et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. AJNR Am J Neuroradiol. 1998; 19 ( 1 ): 143 – 9.
dc.identifier.citedreferenceGano D, Sargent MA, Miller SP, Connolly MB, Wong P, Glass HC, et al. MRI findings in infants with infantile spasms after neonatal hypoxic‐ischemic encephalopathy. Pediatr Neurol. 2013; 49 ( 6 ): 401 – 5.
dc.identifier.citedreferenceJung DE, Ritacco DG, Nordli DR, Koh S, Venkatesan C. Early anatomical injury patterns predict epilepsy in head cooled neonates with hypoxic‐ischemic encephalopathy. Pediatr Neurol. 2015; 53 ( 2 ): 135 – 40.
dc.identifier.citedreferenceMcDonough TL, Paolicchi JM, Heier LA, Das N, Engel M, Perlman JM, et al. Prediction of future epilepsy in neonates with hypoxic‐ischemic encephalopathy who received selective head cooling. J Child Neurol. 2017; 32 ( 7 ): 630 – 7.
dc.identifier.citedreferenceBlumenfeld H. Consciousness and epilepsy: why are patients with absence seizures absent? Prog Brain Res. 2005; 150: 271 – 86.
dc.identifier.citedreferenceKuzniecky R, Guthrie B, Mountz J, et al. Intrinsic epileptogenesis of hypothalamic hamartomas in gelastic epilepsy. Ann Neurol. 1997; 42 ( 1 ): 60 – 7.
dc.identifier.citedreferenceGlass HC, Hong KJ, Rogers EE, et al. Risk factors for epilepsy in children with neonatal encephalopathy. Pediatr Res. 2011; 70 ( 5 ): 535 – 40.
dc.identifier.citedreferenceGlass HC, Glidden D, Jeremy RJ, Barkovich AJ, Ferriero DM, Miller SP. Clinical neonatal seizures are independently associated with outcome in infants at risk for hypoxic‐ischemic brain injury. J Pediatr. 2009; 155 ( 3 ): 318 – 23.
dc.identifier.citedreferenceGarfinkle J, Shevell MI. Prognostic factors and development of a scoring system for outcome of neonatal seizures in term infants. Eur J Paediatr Neurol. 2011; 15 ( 3 ): 222 – 9.
dc.identifier.citedreferencePisani F, Sisti L, Seri S. A scoring system for early prognostic assessment after neonatal seizures. Pediatrics. 2009; 124 ( 4 ): e580 – 587.
dc.identifier.citedreferenceKato T, Okumura A, Hayakawa F, et al. Prolonged EEG depression in term and near‐term infants with hypoxic ischemic encephalopathy and later development of West syndrome. Epilepsia. 2010; 51 ( 12 ): 2392 – 6.
dc.identifier.citedreferencePestana Knight EM, Schiltz NK, Bakaki PM, Koroukian SM, Lhatoo SD, Kaiboriboon K. Increasing utilization of pediatric epilepsy surgery in the United States between 1997 and 2009. Epilepsia. 2015; 56 ( 3 ): 375 – 81.
dc.identifier.citedreferenceGregerson CHY, Bakian AV, Wilkes J, et al. Disparities in pediatric epilepsy remission are associated with race and ethnicity. J Child Neurol. 2019; 34 ( 14 ): 928 – 36.
dc.identifier.citedreferenceHussain SA, Lay J, Cheng E, Weng J, Sankar R, Baca CB. Recognition of infantile spasms is often delayed: the ASSIST Study. J Pediatr. 2017; 190: 215 – 21.e211.
dc.identifier.citedreferencePapile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978; 92 ( 4 ): 529 – 34.
dc.identifier.citedreferenceFisher RS, Cross JH, D’Souza C, French JA, Haut SR, Higurashi N, et al. Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia. 2017; 58 ( 4 ): 531 – 42.
dc.identifier.citedreferenceGlass HC, Wu YW. Epidemiology of neonatal seizures. J Pediatr Neurol. 2009; 7: 13 – 7.
dc.identifier.citedreferenceGlass HC, Shellhaas RA, Wusthoff CJ, et al. Contemporary profile of seizures in neonates: a Prospective Cohort Study. J Pediatr. 2016; 174 ( 98–103 ): e101.
dc.identifier.citedreferenceGarfinkle J, Shevell MI. Cerebral palsy, developmental delay, and epilepsy after neonatal seizures. Pediatr. Neurol.. 2011; 44: 88 – 96.
dc.identifier.citedreferenceNunes ML, Martins MA, Barea BM, Wainberg RC, da Costa JS. Neurological outcomes of newborns with neonatal seizures. Arq Neuropsiquiatr. 2008; 66: 168 – 74.
dc.identifier.citedreferencePisani F, Cerminara C, Fusco C, Sisti L. Neonatal status epilepticus vs. recurrent neonatal seizures: clinical findings and outcome. Neurology. 2007; 69 ( 23 ): 2177 – 85.
dc.identifier.citedreferenceBillinghurst LL, Beslow LA, Abend NS, et al. Incidence and predictors of epilepsy after pediatric arterial ischemic stroke. Neurology. 2017; 88 ( 7 ): 630 – 7.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.