Show simple item record

Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls

dc.contributor.authorLuo, Zhong‐zhen
dc.contributor.authorCai, Songting
dc.contributor.authorHao, Shiqiang
dc.contributor.authorBailey, Trevor P.
dc.contributor.authorSpanopoulos, Ioannis
dc.contributor.authorLuo, Yubo
dc.contributor.authorXu, Jianwei
dc.contributor.authorUher, Ctirad
dc.contributor.authorWolverton, Christopher
dc.contributor.authorDravid, Vinayak P.
dc.contributor.authorYan, Qingyu
dc.contributor.authorKanatzidis, Mercouri G.
dc.date.accessioned2021-01-05T18:45:40Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:45:40Z
dc.date.issued2021-01-04
dc.identifier.citationLuo, Zhong‐zhen ; Cai, Songting; Hao, Shiqiang; Bailey, Trevor P.; Spanopoulos, Ioannis; Luo, Yubo; Xu, Jianwei; Uher, Ctirad; Wolverton, Christopher; Dravid, Vinayak P.; Yan, Qingyu; Kanatzidis, Mercouri G. (2021). "Strong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls." Angewandte Chemie 133(1): 272-277.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/163835
dc.description.abstractWe present an effective approach to favorably modify the electronic structure of PbSe using Ag doping coupled with SrSe or BaSe alloying. The Ag- 4d states make a contribution to in the top of the heavy hole valence band and raise its energy. The Sr and Ba atoms diminish the contribution of Pb- 6s2 states and decrease the energy of the light hole valence band. This electronic structure modification increases the density- of- states effective mass, and strongly enhances the thermoelectric performance. Moreover, the Ag- rich nanoscale precipitates, discordant Ag atoms, and Pb/Sr, Pb/Ba point defects in the PbSe matrix work together to reduce the lattice thermal conductivity, resulting a record high average ZTavg of around 0.86 over 400- 923- K.We find a new mechanism of strong band convergence with low onset temperature for p- type PbSe. The discordant Ag doping raises the heavy hole band and Sr/BaSe alloying lowers the light hole band, leading to the fast and strong band convergence and significantly enhanced Seebeck coefficient.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherband convergence
dc.subject.othernanostructuring
dc.subject.otherlead chalcogenides
dc.subject.otherthermoelectricity
dc.subject.othersilver doping
dc.titleStrong Valence Band Convergence to Enhance Thermoelectric Performance in PbSe with Two Chemically Independent Controls
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163835/1/ange202011765.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163835/2/ange202011765-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163835/3/ange202011765_am.pdf
dc.identifier.doi10.1002/ange.202011765
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceL. Zeng, J. Zhang, L. You, H. Zheng, Y. Liu, L. Ouyang, P. Huang, J. Xing, J. Luo, J. Alloys Compd. 2016, 687, 765 - 772;
dc.identifier.citedreferenceZ.-Z. Luo, X. Zhang, X. Hua, G. Tan, T. P. Bailey, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Adv. Funct. Mater. 2018, 28, 1801617;
dc.identifier.citedreferenceZ.-Z. Luo, S. Cai, S. Hao, T. P. Bailey, X. Su, I. Spanopoulos, I. Hadar, G. Tan, Y. Luo, J. Xu, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 16169 - 16177;
dc.identifier.citedreferenceL. Yang, Z.-G. Chen, M. Hong, L. Wang, D. Kong, L. Huang, G. Han, Y. Zou, M. Dargusch, J. Zou, Nano Energy 2017, 31, 105 - 112.
dc.identifier.citedreference 
dc.identifier.citedreferenceL.-D. Zhao, S. Hao, S.-H. Lo, C.-I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2013, 135, 7364 - 7370;
dc.identifier.citedreferenceH. Wang, Z. M. Gibbs, Y. Takagiwa, G. J. Snyder, Energy Environ. Sci. 2014, 7, 804 - 811;
dc.identifier.citedreferenceQ. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, Z. Ren, J. Am. Chem. Soc. 2012, 134, 10031 - 10038;
dc.identifier.citedreferenceY. Liu, L. You, C. Wang, J. Zhang, J. Yang, K. Guo, J. Luo, W. Zhang, J. Electron. Mater. 2018, 47, 2584 - 2590;
dc.identifier.citedreferenceC. Gayner, K. K. Kar, W. Kim, Mater. Today Energy 2018, 9, 359 - 376;
dc.identifier.citedreferenceL. C. Chen, P. Q. Chen, W. J. Li, Q. Zhang, V. V. Struzhkin, A. F. Goncharov, Z. Ren, X. J. Chen, Nat. Mater. 2019, 18, 1321 - 1326;
dc.identifier.citedreferenceL. You, Y. Liu, X. Li, P. Nan, B. Ge, Y. Jiang, P. Luo, S. Pan, Y. Pei, W. Zhang, G. J. Snyder, J. Yang, J. Zhang, J. Luo, Energy Environ. Sci. 2018, 11, 1848 - 1858;
dc.identifier.citedreferenceM. Hong, Z.-G. Chen, S. Matsumura, J. Zou, Nano Energy 2018, 50, 785 - 793;
dc.identifier.citedreferenceZ. Chen, B. Ge, W. Li, S. Lin, J. Shen, Y. Chang, R. Hanus, G. J. Snyder, Y. Pei, Nat. Commun. 2017, 8, 13828;
dc.identifier.citedreferenceQ. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Energy Environ. Sci. 2012, 5, 5246 - 5251;
dc.identifier.citedreferenceC.-F. Wu, T.-R. Wei, J.-F. Li, APL Mater. 2016, 4, 104801.
dc.identifier.citedreferenceZ. Pan, H. Wang, J. Mater. Chem. A 2019, 7, 12859 - 12868.
dc.identifier.citedreferenceY. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G. J. Snyder, Nature 2011, 473, 66 - 69.
dc.identifier.citedreferenceY. Takagiwa, Y. Pei, G. Pomrehn, G. J. Snyder, APL Mater. 2013, 1, 011101.
dc.identifier.citedreferenceZ.-Z. Luo, S. Hao, X. Zhang, X. Hua, S. Cai, G. Tan, T. P. Bailey, R. Ma, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, Energy Environ. Sci. 2018, 11, 3220 - 3230.
dc.identifier.citedreferenceG. Tan, S. Hao, S. Cai, T. P. Bailey, Z. Luo, I. Hadar, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 4480 - 4486.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Tan, L.-D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123 - 12149;
dc.identifier.citedreferenceY. Lee, S. H. Lo, J. Androulakis, C. I. Wu, L. D. Zhao, D. Y. Chung, T. P. Hogan, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2013, 135, 5152 - 5160.
dc.identifier.citedreferenceM. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S. T. Pantelides, J. Zou, Z.-G. Chen, J. Am. Chem. Soc. 2019, 141, 1742 - 1748.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Cai, S. Hao, Z.-Z. Luo, X. Li, I. Hadar, T. P. Bailey, X. Hu, C. Uher, Y.-Y. Hu, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci. 2020, 13, 200 - 211;
dc.identifier.citedreferenceJ. M. Hodges, S. Hao, J. A. Grovogui, X. Zhang, T. P. Bailey, X. Li, Z. Gan, Y. Y. Hu, C. Uher, V. P. Dravid, C. Wolverton, M. G. Kanatzidis, J. Am. Chem. Soc. 2018, 140, 18115 - 18123;
dc.identifier.citedreferenceL. D. Zhao, H. J. Wu, S. Q. Hao, C. I. Wu, X. Y. Zhou, K. Biswas, J. Q. He, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Energy Environ. Sci. 2013, 6, 3346 - 3355;
dc.identifier.citedreferenceG. Tan, F. Shi, S. Hao, L.-D. Zhao, H. Chi, X. Zhang, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nat. Commun. 2016, 7, 12167.
dc.identifier.citedreferenceJ. M. Skelton, S. C. Parker, A. Togo, I. Tanaka, A. Walsh, Phys. Rev. B 2014, 89, 205203.
dc.identifier.citedreferenceT. J. Slade, T. P. Bailey, J. A. Grovogui, X. Hua, X. Zhang, J. J. Kuo, I. Hadar, G. J. Snyder, C. Wolverton, V. P. Dravid, C. Uher, M. G. Kanatzidis, Adv. Energy Mater. 2019, 9, 1901377.
dc.identifier.citedreferenceH. Wang, Y. Pei, A. D. LaLonde, G. J. Snyder, Adv. Mater. 2011, 23, 1366 - 1370.
dc.identifier.citedreferenceH.-S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, G. J. Snyder, APL Mater. 2015, 3, 041506.
dc.identifier.citedreferenceQ. Lin, S. Tepfer, C. Heideman, C. Mortensen, N. Nguyen, P. Zschack, M. Beekman, D. C. Johnson, J. Mater. Res. 2011, 26, 1866 - 1871.
dc.identifier.citedreferenceL.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373 - 377.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818 - 821;
dc.identifier.citedreferenceT. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, X. Zhao, Adv. Mater. 2017, 29, 1605884;
dc.identifier.citedreferenceJ. He, T. M. Tritt, Science 2017, 357, 1369;
dc.identifier.citedreferenceJ. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, Angew. Chem. Int. Ed. 2009, 48, 8616 - 8639; Angew. Chem. 2009, 121, 8768 - 8792;
dc.identifier.citedreferenceA. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Energy Environ. Sci. 2009, 2, 466;
dc.identifier.citedreferenceG. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105 - 114;
dc.identifier.citedreferenceL.-D. Zhao, C. Chang, G. Tan, M. G. Kanatzidis, Energy Environ. Sci. 2016, 9, 3044 - 3060;
dc.identifier.citedreferenceW. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Angew. Chem. Int. Ed. 2016, 55, 6826 - 6841; Angew. Chem. 2016, 128, 6938 - 6954;
dc.identifier.citedreferenceZ.-Z. Luo, Y. Zhang, C. Zhang, H. T. Tan, Z. Li, A. Abutaha, X.-L. Wu, Q. Xiong, K. A. Khor, K. Hippalgaonkar, J. Xu, H. H. Hng, Q. Yan, Adv. Energy Mater. 2017, 7, 1601285.
dc.identifier.citedreference 
dc.identifier.citedreferenceZ.-Z. Luo, S. Hao, S. Cai, T. P. Bailey, G. Tan, Y. Luo, I. Spanopoulos, C. Uher, C. Wolverton, V. P. Dravid, Q. Yan, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 6403 - 6412;
dc.identifier.citedreferenceX.-L. Shi, J. Zou, Z.-G. Chen, Chem. Rev. 2020, 120, 7399 - 7515.
dc.identifier.citedreference 
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.