Show simple item record

Optimal routing of multimodal mobility systems with ride‐sharing

dc.contributor.authorYu, Xiao
dc.contributor.authorMiao, Huimin
dc.contributor.authorBayram, Armagan
dc.contributor.authorYu, Meigui
dc.contributor.authorChen, Xi
dc.date.accessioned2021-01-05T18:45:41Z
dc.date.availableWITHHELD_17_MONTHS
dc.date.available2021-01-05T18:45:41Z
dc.date.issued2021-05
dc.identifier.citationYu, Xiao; Miao, Huimin; Bayram, Armagan; Yu, Meigui; Chen, Xi (2021). "Optimal routing of multimodal mobility systems with ride‐sharing." International Transactions in Operational Research 28(3): 1164-1189.
dc.identifier.issn0969-6016
dc.identifier.issn1475-3995
dc.identifier.urihttps://hdl.handle.net/2027.42/163836
dc.description.abstractMultimodal transportation systems are a combination of more environmentally friendly shared transport modes including public transport, ride‐sharing, shuttle‐sharing, or even completely carbon‐free modes such as cycling to better meet customer needs. Multimodal mobility solutions are expected to contribute in mitigating traffic congestion and carbon emissions, and to result in savings in costs. They are also expected to improve access to transportation, more specifically for those in rural or low‐populated communities (i.e., difficult to serve by public transportation only). Motivated by its benefits, in this study, we consider the combination of the ride‐sharing and public transportation services and formulate a mixed integer programming model for the multimodal transportation planning problem. We propose a heuristic approach (i.e., angle‐based clustering [AC] algorithm) and compare its efficiency with the exact solution for different settings. We find that the AC algorithm works well in both small and large settings. We further show that the multimodal transportation system with ride‐sharing can yield significant benefits on travel distances and travel times.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherride‐sharing
dc.subject.othervehicle routing
dc.subject.othermultimodal transportation
dc.subject.othermobility
dc.titleOptimal routing of multimodal mobility systems with ride‐sharing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelIndustrial and Operations Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163836/1/itor12870_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163836/2/itor12870.pdf
dc.identifier.doi10.1111/itor.12870
dc.identifier.sourceInternational Transactions in Operational Research
dc.identifier.citedreferenceParker, N., 2017. 2017 multimodal transportation industry predictions. Available at https://medium.com/move-forward-blog/2017-multimodal-transportation-industry-predictions-49c4fbb6f8da (accessed June 2020).
dc.identifier.citedreferenceKim, B.‐I., Kim, S., Park, J., 2012. A school bus scheduling problem. European Journal of Operational Research 218, 2, 577 – 585.
dc.identifier.citedreferenceLitman, T., 2017. Introduction to Multi‐Modal Transportation Planning. Victoria Transport Policy Institute, Victoria, BC.
dc.identifier.citedreferenceLitman, T., 2018. Rural multimodal planning: why and how to improve travel options in small towns and rural communities. Victoria Transport Policy Institute. Available at http://www.vtpi.org/rmp.pdf (accessed June 2020).
dc.identifier.citedreferenceLiu, F.‐H.F., Shen, S.‐Y., 1999. A route‐neighborhood‐based metaheuristic for vehicle routing problem with time windows. European Journal of Operational Research 118, 3, 485 – 504.
dc.identifier.citedreferenceMaheo, A., Kilby, P., Van Hentenryck, P., 2017. Benders decomposition for the design of a hub and shuttle public transit system. Transportation Science 53, 77 – 88.
dc.identifier.citedreferenceMishra, S., Welch, T.F., Jha, M.K., 2012. Performance indicators for public transit connectivity in multi‐modal transportation networks. Transportation Research Part A: Policy and Practice 46, 7, 1066 – 1085.
dc.identifier.citedreferenceOuyang, Y., 2007. Design of vehicle routing zones for large‐scale distribution systems. Transportation Research Part B: Methodological 41, 10, 1079 – 1093.
dc.identifier.citedreferencePark, J., Tae, H., Kim, B.‐I., 2012. A post‐improvement procedure for the mixed load school bus routing problem. European Journal of Operational Research 217, 1, 204 – 213.
dc.identifier.citedreferenceQu, Z., Cai, L., Li, C., Zheng, L., 2004. Solution framework for the large scale vehicle delivery/collection problem. Journal of Tsinghua University 44, 5, 581 – 584.
dc.identifier.citedreferenceRenaud, J., Boctor, F.F., 2002. A sweep‐based algorithm for the fleet size and mix vehicle routing problem. European Journal of Operational Research 140, 3, 618 – 628.
dc.identifier.citedreferenceRiera‐Ledesma, J., Salazar‐Gonzalez, J.‐J., 2012. Solving school bus routing using the multiple vehicle traveling purchaser problem: a branch‐and‐cut approach. Computers & Operations Research 39, 2, 391 – 404.
dc.identifier.citedreferenceRopke, S., Pisinger, D., 2006. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science 40, 4, 455 – 472.
dc.identifier.citedreferenceSavelsbergh, M.W., Sol, M., 1995. The general pickup and delivery problem. Transportation Science 29, 1, 17 – 29.
dc.identifier.citedreferenceSchittekat, P., Kinable, J., Sorensen, K., Sevaux, M., Spieksma, F., Springael, J., 2013. A metaheuristic for the school bus routing problem with bus stop selection. European Journal of Operational Research 229, 2, 518 – 528.
dc.identifier.citedreferenceSteadieSeifi, M., Dellaert, N.P., Nuijten, W., Van Woensel, T., Raoufi, R., 2014. Multimodal freight transportation planning: a literature review. European Journal of Operational Research 233, 1, 1 – 15.
dc.identifier.citedreferenceSun, Y., Lang, M., 2015. Bi‐objective optimization for multi‐modal transportation routing planning problem based on Pareto optimality. Journal of Industrial Engineering and Management 8, 4, 1195 – 1217.
dc.identifier.citedreferenceTrigg, T., 2015. Cities where it’s faster to walk than drive. Available at https://blogs.scientificamerican.com/plugged-in/cities-where-it-s-faster-to-walk-than-drive/ (accessed June 2020).
dc.identifier.citedreferenceWang, Q., Han, Z., 2010. The optimal routes and modes selection in container multimodal transportation networks. 2010 International Conference on Optoelectronics and Image Processing. IEEE, Piscataway, NJ, pp. 573 – 576.
dc.identifier.citedreferenceYao, J., Shi, F., Zhou, Z., Qin, J., 2012. Combinatorial optimization of exclusive bus lanes and bus frequencies in multimodal transportation network. Journal of Transportation Engineering 138, 12, 1422 – 1429.
dc.identifier.citedreferenceZhang, Y., Lin, B., Liang, D., Gao, H., 2006. Research on a generalized shortest path method of optimizing intermodal transportation problems. Journal of the China Railway Society 28, 22 – 26.
dc.identifier.citedreferenceZhang, Y., Liu, P., Yang, L., Gao, Y., 2015. A bi‐objective model for uncertain multi‐modal shortest path problems. Journal of Uncertainty Analysis and Applications 3, 1, 8.
dc.identifier.citedreferenceAgatz, N., Erera, A., Savelsbergh, M., Wang, X., 2012. Optimization for dynamic ride‐sharing: a review. European Journal of Operational Research 223, 2, 295 – 303.
dc.identifier.citedreferenceAlumur, S.A., Yaman, H., Kara, B.Y., 2012. Hierarchical multimodal hub location problem with time‐definite deliveries. Transportation Research Part E: Logistics and Transportation Review 48, 6, 1107 – 1120.
dc.identifier.citedreferenceAmbrosino, D., Sciomachen, A., 2014. An algorithmic framework for computing shortest routes in urban multimodal networks with different criteria. Procedia—Social and Behavioral Sciences 108, 139 – 152.
dc.identifier.citedreferenceBektas, T., Elmastas, S., 2007. Solving school bus routing problems through integer programming. Journal of the Operational Research Society 58, 12, 1599 – 1604.
dc.identifier.citedreferenceBerbeglia, G., Cordeau, J.‐F., Gribkovskaia, I., Laporte, G., 2007. Static pickup and delivery problems: a classification scheme and survey. Top 15, 1, 1 – 31.
dc.identifier.citedreferenceBogl, M., Doerner, K.F., Parragh, S.N., 2015. The school bus routing and scheduling problem with transfers. Networks 65, 2, 180 – 203.
dc.identifier.citedreferenceBoll, C., 2018. Ride sharing and cities team up on transit, last mile issues. Available at https://www.foley.com/en/insights/publications/2018/05/ride-sharing-and-cities-team-up-on-transit-last-mi (accessed June 2020).
dc.identifier.citedreferenceBouros, P., Sacharidis, D., Dalamagas, T., Sellis, T., 2011. Dynamic pickup and delivery with transfers. International Symposium on Spatial and Temporal Databases. Springer, Berlin, pp. 112 – 129.
dc.identifier.citedreferenceBraca, J., Bramel, J., Posner, B., Simchi‐Levi, D., 1997. A computerized approach to the New York city school bus routing problem. IIE Transactions 29, 8, 693 – 702.
dc.identifier.citedreferenceCohen, A., Shaheen, S., 2018. Planning for shared mobility. PAS Report 583, University of California, Berkeley, CA. Available at https://escholarship.org/content/qt0dk3h89p/qt0dk3h89p.pdf (accessed June 2020).
dc.identifier.citedreferenceCortes, C.E., Matamala, M., Contardo, C., 2010. The pickup and delivery problem with transfers: formulation and a branch‐and‐cut solution method. European Journal of Operational Research 200, 3, 711 – 724.
dc.identifier.citedreferenceDaganzo, C.F., 2007. Urban gridlock: macroscopic modeling and mitigation approaches. Transportation Research Part B: Methodological 41, 1, 49 – 62.
dc.identifier.citedreferenceDickens, M., 2018. Public transportation ridership report. Available at https://www.apta.com/research-technical-resources/transit-statistics/ridership-report/ (accessed June 2020).
dc.identifier.citedreferenceDickens, M., Neff, J., 2011. APTA 2011 Public Transportation Fact Book. American Public Transportation Association, Washington, DC.
dc.identifier.citedreferenceEster, M., Kriegel, H.‐P., Sander, J., Xu, X., 1996. A density‐based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, OR, pp. 226 – 231.
dc.identifier.citedreferenceFugenschuh, A., 2009. Solving a school bus scheduling problem with integer programming. European Journal of Operational Research 193, 3, 867 – 884.
dc.identifier.citedreferenceGelareh, S., Nickel, S., 2011. Hub location problems in transportation networks. Transportation Research Part E: Logistics and Transportation Review 47, 6, 1092 – 1111.
dc.identifier.citedreferenceGillett, B.E., Miller, L.R., 1974. A heuristic algorithm for the vehicle‐dispatch problem. Operations Research 22, 2, 340 – 349.
dc.identifier.citedreferenceHorn, M., 2002. Multi‐modal and demand‐responsive passenger transport systems: a modelling framework with embedded control systems. Transportation Research Part A: Policy and Practice 36, 2, 167 – 188.
dc.identifier.citedreferenceIshfaq, R., Sox, C.R., 2011. Hub location‐allocation in intermodal logistic networks. European Journal of Operational Research 210, 2, 213 – 230.
dc.identifier.citedreferenceJennings, G., 2015. Finding our balance: considering the opportunities for public bicycle systems in Cape Town, South Africa. Research in Transportation Business & Management 15, 6 – 14.
dc.identifier.citedreferenceJohnson, M., 2010. Average schedule speed: how does metro compare? Available at https://ggwash.org/view/4524/average-schedule-speed-how-does-metro-compare (accessed June 2020).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.