Show simple item record

Effects of stereoisomeric structure and bond location on the ignition and reaction pathways of hexenes

dc.contributor.authorBarraza‐botet, Cesar L.
dc.contributor.authorLiu, Changpeng
dc.contributor.authorKim, John H.
dc.contributor.authorWagnon, Scott W.
dc.contributor.authorWooldridge, Margaret S.
dc.date.accessioned2021-01-05T18:45:44Z
dc.date.availableWITHHELD_14_MONTHS
dc.date.available2021-01-05T18:45:44Z
dc.date.issued2021-02
dc.identifier.citationBarraza‐botet, Cesar L. ; Liu, Changpeng; Kim, John H.; Wagnon, Scott W.; Wooldridge, Margaret S. (2021). "Effects of stereoisomeric structure and bond location on the ignition and reaction pathways of hexenes." International Journal of Chemical Kinetics 53(2): 287-298.
dc.identifier.issn0538-8066
dc.identifier.issn1097-4601
dc.identifier.urihttps://hdl.handle.net/2027.42/163838
dc.description.abstractThe current work presents new experimental autoignition and speciation data on the two cis- hexene isomers: cis- 2- hexene and cis- 3- hexene. The new data provide insights on the effects of carbon- carbon double bond location and stereoisomeric structures on ignition delay times and reaction pathways for linear hexene isomers. Experiments were performed using the University of Michigan rapid compression facility to determine ignition delay times from pressure- time histories. Stoichiometric (Ï Â = 1.0) mixtures at dilution levels of inert gas to O2 = 7.5:1 (mole basis) were investigated at an average pressure of 11 atm and temperatures from 809 to 1052 K. Speciation experiments were conducted at T = 900 K for the two cis- hexene isomers, where fast- gas sampling and gas chromatography were used to identify and quantify the two cis- hexene isomers and stable intermediate species. The ignition delay time data showed negligible sensitivity to the location of the carbon- carbon double bond and the stereoisomeric structure (cis- trans), and the species data showed no correlation with the stereoisomeric structure, but there was a strong correlation of some of the measured species with the location of the double bond in the hexene isomer. In particular, 2- hexene showed strong selectivity to propene, acetaldehyde, and 1,3- butadiene, and 3- hexene showed selectivity to propanal. Model predictions of ignition delay times were in excellent agreement with the experimental data. There was generally good agreement for the model predictions of the species data for 2- hexene; however, the mechanism overpredicted some of the small aldehyde (C2- C4) species for 3- hexene. Reaction pathway analysis indicates the hexenes are almost exclusively consumed by H- atom abstraction reactions at the conditions studied (P = 11 atm, T > 900 K), and not by C3- C4 scission as observed in high- temperature (>1300 K) hexene ignition studies. Improved estimates for 3- hexene + OH reactions may improve model predictions for the species measured in this work.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhexene isomers
dc.subject.othercis and trans isomers
dc.subject.otherignition and species measurements
dc.titleEffects of stereoisomeric structure and bond location on the ignition and reaction pathways of hexenes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163838/1/kin21442_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163838/2/kin21442.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163838/3/kin21442-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/kin.21442
dc.identifier.sourceInternational Journal of Chemical Kinetics
dc.identifier.citedreferenceKing KD. Very low- pressure pyrolysis (VLPP) of hex- 1- ene. Kinetics of the retro- ene decomposition of a mono- olefin. Int J Chem Kinet. 1979; 11: 1071 - 1080.
dc.identifier.citedreferenceYahyaoui M, Djebaïli- Chaumeix N, Dagaut P, Paillard CE, Gail S. Kinetics of 1- hexene oxidation in a JSR and a shock tube: experimental and modeling study. Combust Flame. 2006; 147: 67 - 78.
dc.identifier.citedreferenceLizardo- Huerta JC, Sirjean B, Bounaceur R, Fournet R. Intramolecular effects on the kinetics of unimolecular reactions of beta- HOROO* and HOQ*OOH radicals. Phys Chem Chem Phys. 2016; 18: 12231 - 12251.
dc.identifier.citedreferenceRauk A, Boyd RJ, Boyd SL, Henry DJ, Radom L. Alkoxy radicals in the gaseous phase: beta- scission reactions and formation by radical addition to carbonyl compounds. Can J Chem. 2003; 81: 431 - 442.
dc.identifier.citedreferenceZádor J, Jasper AW, Miller JA. The reaction between propene and hydroxyl. Phys Chem Chem Phys. 2009; 11: 11040 - 11053.
dc.identifier.citedreferenceVasu SS, Huynh LK, Davidson DF, Hanson RK, Golden DM. Reactions of OH with butene isomers: measurements of the overall rates and a theoretical study. J Phys Chem A. 2011; 115: 2549 - 2556.
dc.identifier.citedreferenceSivaramakrishnan R, Michael JV. Rate constants for OH with selected large alkanes: shock- tube measurements and an improved group scheme. J Phys Chem A. 2009; 113: 5047 - 5060.
dc.identifier.citedreferenceYang F, Deng F, Pan Y, Zhang Y, Tang C, Huang Z. Kinetics of hydrogen abstraction and addition reactions of 3- hexene by ȮH radicals. J Phys Chem A. 2017; 121: 1877 - 1889.
dc.identifier.citedreferenceYang F, Deng F, Zhang P, Hu E, Cheng Y, Huang Z. Comparative study on ignition characteristics of 1- hexene and 2- hexene behind reflected shock waves. Energy Fuels. 2016; 30: 5130 - 5137.
dc.identifier.citedreferenceYang F, Deng F, Zhang P, Tian Z, Tang C, Huang Z. Experimental and kinetic modeling study on trans- 3- hexene ignition behind reflected shock waves. Energy Fuels. 2016; 30: 706 - 716.
dc.identifier.citedreferenceWagnon SW, Barraza- Botet CL, Wooldridge MS. Effects of bond location on the ignition and reaction pathways of trans - hexene isomers. J Phys Chem A. 2015; 119: 7695 - 7703.
dc.identifier.citedreferenceBattin- Leclerc F, Rodriguez A, Husson B, et al. Products from the oxidation of linear isomers of hexene. J Phys Chem A. 2014; 118: 673 - 683.
dc.identifier.citedreferenceBounaceur R, Warth V, Sirjean B, Glaude PA, Fournet R, Battin- Leclerc F. Influence of the position of the double bond on the autoignition of linear alkenes at low temperature. Proc Combust Inst. 2009; 32 ( I ): 387 - 394.
dc.identifier.citedreferenceMehl M, Pitz WJ, Westbrook CK, Yasunaga K, Conroy C, Curran HJ. Autoignition behavior of unsaturated hydrocarbons in the low and high temperature regions. Proc Combust Inst. 2011; 33: 201 - 208.
dc.identifier.citedreferenceMehl M, Vanhove G, Pitz WJ, Ranzi E. Oxidation and combustion of the n- hexene isomers: a wide range kinetic modeling study. Combust Flame. 2008; 155: 756 - 772.
dc.identifier.citedreferenceVanhove G, Ribaucour M, Minetti R. On the influence of the position of the double bond on the low- temperature chemistry of hexenes. Proc Combust Inst. 2005; 30: 1065 - 1072.
dc.identifier.citedreferenceFan X, Wang G, Li Y, Wang Z, Yuan W, Zhao L. Experimental and kinetic modeling study of 1- hexene combustion at various pressures. Combust Flame. 2016; 173: 151 - 160.
dc.identifier.citedreferenceHoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renewable Sustain Energy Rev. 2012; 16: 143 - 169.
dc.identifier.citedreferenceMehl M, Pitz MJ, Westbrook CK, Curran HJ. Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc Combust Inst. 2011; 33: 193 - 200.
dc.identifier.citedreferenceBawn CEH, Skirrow G. The oxidation of olefins. Proc Combust Inst. 1955; 5: 521 - 529.
dc.identifier.citedreferenceTsang W. Thermal stability of cyclohexane and 1- hexene. Int J Chem Kinet. 1978; 10: 1119 - 1138.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.