Show simple item record

Sarcolemma wounding activates dynamin‐dependent endocytosis in striated muscle

dc.contributor.authorMcDade, Joel R.
dc.contributor.authorNaylor, Molly T.
dc.contributor.authorMichele, Daniel E.
dc.date.accessioned2021-01-05T18:46:10Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:46:10Z
dc.date.issued2021-01
dc.identifier.citationMcDade, Joel R.; Naylor, Molly T.; Michele, Daniel E. (2021). "Sarcolemma wounding activates dynamin‐dependent endocytosis in striated muscle." The FEBS Journal (1): 160-174.
dc.identifier.issn1742-464X
dc.identifier.issn1742-4658
dc.identifier.urihttps://hdl.handle.net/2027.42/163857
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdynamin
dc.subject.othermembrane transport
dc.subject.otherskeletal muscle
dc.subject.othermembrane repair
dc.subject.otherendocytosis
dc.subject.otherdysferlin
dc.titleSarcolemma wounding activates dynamin‐dependent endocytosis in striated muscle
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163857/1/febs15556.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163857/2/febs15556_am.pdf
dc.identifier.doi10.1111/febs.15556
dc.identifier.sourceThe FEBS Journal
dc.identifier.citedreferenceWu X‐S, McNeil BD, Xu J, Fan J, Xue L, Melicoff E, Adachi R, Bai L & Wu L‐G ( 2009 ) Ca2+ and calmodulin initiate all forms of endocytosis during depolarization at a nerve terminal. Nat Neurosci 12, 1003 – 1010.
dc.identifier.citedreferenceCai C, Weisleder N, Ko J‐K, Komazaki S, Sunada Y, Nishi M, Takeshima H & Ma J ( 2009 ) Membrane repair defects in muscular dystrophy are linked to altered interaction between MG53, Caveolin‐3, and dysferlin. J Biol Chem 284, 15894 – 15902.
dc.identifier.citedreferenceMcCluskey A, Daniel JA, Hadzic G, Chau N, Clayton EL, Mariana A, Whiting A, Gorgani NN, Lloyd J, Quan A et al. ( 2013 ) Building a better dynasore: the dyngo compounds potently inhibit dynamin and endocytosis. Traffic 14, 1272 – 1289.
dc.identifier.citedreferenceMcDade JR, Archambeau A & Michele DE ( 2014 ) Rapid actin‐cytoskeleton–dependent recruitment of plasma membrane–derived dysferlin at wounds is critical for muscle membrane repair. FASEB J 28, 3660 – 3670.
dc.identifier.citedreferenceCovian‐Nares JF, Koushik SV, Puhl HL III & Vogel SS ( 2010 ) Membrane wounding triggers ATP release and dysferlin‐mediated intercellular calcium signaling. J Cell Sci 123, 1884 – 1893.
dc.identifier.citedreferenceMellgren RL, Miyake K, Kramerova I, Spencer MJ, Bourg N, Bartoli M, Richard I, Greer PA & McNeil PL ( 2009 ) Calcium‐dependent plasma membrane repair requires m‐ or [mu]‐calpain, but not calpain‐3, the proteasome, or caspases. Biochim Biophys Acta 1793, 1886 – 1893.
dc.identifier.citedreferenceCheng X, Zhang X, Gao Q, Ali Samie M, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y et al. ( 2014 ) The intracellular Ca2+ channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med 20, 1187 – 1192.
dc.identifier.citedreferenceBetz WJ, Bewick GS & Ridge RMAP ( 1992 ) Intracellular movements of fluorescently labeled synaptic vesicles in frog motor‐nerve terminals during nerve‐stimulation. Neuron 9, 805 – 813.
dc.identifier.citedreferenceHan R, Bansal D, Miyake K, Muniz VP, Weiss RM, McNeil PL & Campbell KP ( 2007 ) Dysferlin‐mediated membrane repair protects the heart from stress‐induced left ventricular injury. J Clin Investig 117, 1805 – 1813.
dc.identifier.citedreferenceKerr JP, Ziman AP, Mueller AL, Muriel JM, Kleinhans‐Welte E, Gumerson JD, Vogel SS, Ward CW, Roche JA & Bloch RJ ( 2013 ) Dysferlin stabilizes stress‐induced Ca2+ signaling in the transverse tubule membrane. Proc Natl Acad Sci USA 110, 20831 – 20836.
dc.identifier.citedreferenceHorn A, Van der Meulen JH, Defour A, Hogarth M, Sreetama SC, Reed A, Scheffer L, Chandel NS & Jaiswal JK ( 2017 ) Mitochondrial redox signaling enables repair of injured skeletal muscle cells. Sci Signal 10, eaaj1978.
dc.identifier.citedreferenceAbdullah N, Padmanarayana M, Marty NJ & Johnson CP ( 2014 ) Quantitation of the calcium and membrane binding properties of the C2 domains of dysferlin. Biophys J 106, 382 – 389.
dc.identifier.citedreferenceGerke V, Creutz CE & Moss SE ( 2005 ) Annexins: linking Ca2+ signalling to membrane dynamics. Nat Rev Mol Cell Biol 6, 449 – 461.
dc.identifier.citedreferenceBurr AR & Molkentin JD ( 2015 ) Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 22, 1402 – 1412.
dc.identifier.citedreferenceChin YH, Lee A, Kan HW, Laiman J, Chuang MC, Hsieh ST & Liu YW ( 2015 ) Dynamin‐2 mutations associated with centronuclear myopathy are hypermorphic and lead to T‐tubule fragmentation. Hum Mol Genet 24, 5542 – 5554.
dc.identifier.citedreferenceCowling BS, Toussaint A, Amoasii L, Koebel P, Ferry A, Davignon L, Nishino I, Mandel JL & Laporte J ( 2011 ) Increased expression of wild‐type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol 178, 2224 – 2235.
dc.identifier.citedreferenceGibbs EM, Davidson AE, Telfer WR, Feldman EL & Dowling JJ ( 2014 ) The myopathy‐causing mutation DNM2‐S619L leads to defective tubulation in vitro and in developing zebrafish. Dis Model Mech 7, 157 – 161.
dc.identifier.citedreferenceFraysse B, Guicheney P & Bitoun M ( 2016 ) Calcium homeostasis alterations in a mouse model of the Dynamin 2‐related centronuclear myopathy. Biol Open 5, 1691 – 1696.
dc.identifier.citedreferenceCowling BS, Toussaint A, Amoasii L, Koebel P, Ferry A, Davignon L, Nishino I, Mandel J‐L & Laporte J ( 2011 ) Increased expression of wild‐type or a centronuclear myopathy mutant of dynamin 2 in skeletal muscle of adult mice leads to structural defects and muscle weakness. Am J Pathol 178, 2224 – 2235.
dc.identifier.citedreferenceCowling BS, Chevremont T, Prokic I, Kretz C, Ferry A, Coirault C, Koutsopoulos O, Laugel V, Romero NB & Laporte J ( 2014 ) Reducing dynamin 2 expression rescues X‐linked centronuclear myopathy. J Clin Investig 124, 1350 – 1363.
dc.identifier.citedreferenceLostal W, Bartoli M, Bourg N, Roudaut C, Bentaïb A, Miyake K, Guerchet N, Fougerousse F, McNeil P & Richard I ( 2010 ) Efficient recovery of dysferlin deficiency by dual adeno‐associated vector‐mediated gene transfer. Hum Mol Genet 19, 1897 – 1907.
dc.identifier.citedreferencePark KH, Weisleder N, Zhou JS, Gumpper K, Zhou XY, Duann P, Ma JJ & Lin PH ( 2014 ) Assessment of calcium sparks in intact skeletal muscle fibers. J Vis Exp, e50898.
dc.identifier.citedreferenceAllen DG, Whitehead NP & Froehner SC ( 2016 ) Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96, 253 – 305.
dc.identifier.citedreferenceClaflin DR & Brooks SV ( 2008 ) Direct observation of failing fibers in muscles of dystrophic mice provides mechanistic insight into muscular dystrophy. Am J Physiol Cell Physiol 294, C651 – C658.
dc.identifier.citedreferenceBashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z et al. ( 1998 ) A gene related to Caenorhabditis elegans spermatogenesis factor fer‐1 is mutated in limb‐girdle muscular dystrophy type 2B. Nat Genet 20, 37 – 42.
dc.identifier.citedreferenceBansal D, Miyake K, Vogel SS, Groh S, Chen C‐C, Williamson R, McNeil PL & Campbell KP ( 2003 ) Defective membrane repair in dysferlin‐deficient muscular dystrophy. Nature 423, 168 – 172.
dc.identifier.citedreferenceLennon NJ, Kho A, Bacskai BJ, Perlmutter SL, Hyman BT & Brown RH ( 2003 ) Dysferlin interacts with annexins A1 and A2 and mediates sarcolemmal wound‐healing. J Biol Chem 278, 50466 – 50473.
dc.identifier.citedreferenceCai C, Masumiya H, Weisleder N, Matsuda N, Nishi M, Hwang M, Ko J‐K, Lin P, Thornton A, Zhao X et al. ( 2009 ) MG53 nucleates assembly of cell membrane repair machinery. Nat Cell Biol 11, 56 – 64.
dc.identifier.citedreferenceChakrabarti S, Kobayashi KS, Flavell RA, Marks CB, Miyake K, Liston DR, Fowler KT, Gorelick FS & Andrews NW ( 2003 ) Impaired membrane resealing and autoimmune myositis in synaptotagmin VII–deficient mice. J Cell Biol 162, 543 – 549.
dc.identifier.citedreferenceZhu H, Lin P, De G, Choi K‐H, Takeshima H, Weisleder N & Ma J ( 2011 ) Polymerase transcriptase release factor (PTRF) anchors MG53 protein to cell injury site for initiation of membrane repair. J Biol Chem 286, 12820 – 12824.
dc.identifier.citedreferenceDemonbreun AR & McNally EM ( 2016 ) Plasma membrane repair in health and disease. Curr Top Membr 77, 67 – 96.
dc.identifier.citedreferenceRyan TA, Reuter H & Smith SJ ( 1997 ) Optical detection of a quantal presynaptic membrane turnover. Nature 388, 478 – 482.
dc.identifier.citedreferenceBi GQ, Alderton JM & Steinhardt RA ( 1995 ) Calcium‐regulated exocytosis is required for cell membrane resealing. J Cell Biol 131, 1747 – 1758.
dc.identifier.citedreferenceBi G‐Q, Morris RL, Liao G, Alderton JM, Scholey JM & Steinhardt RA ( 1997 ) Kinesin‐ and myosin‐driven steps of vesicle recruitment for Ca2+‐regulated exocytosis. J Cell Biol 138, 999 – 1008.
dc.identifier.citedreferenceSteinhardt R, Bi G & Alderton J ( 1994 ) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263, 390 – 393.
dc.identifier.citedreferenceMcDade JR & Michele DE ( 2014 ) Membrane damage‐induced vesicle‐vesicle fusion of dysferlin‐containing vesicles in muscle cells requires microtubules and kinesin. Hum Mol Genet 23, 1677 – 1686.
dc.identifier.citedreferenceBitoun M, Maugenre S, Jeannet P‐Y, Lacene E, Ferrer X, Laforet P, Martin J‐J, Laporte J, Lochmuller H, Beggs AH et al. ( 2005 ) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37, 1207 – 1209.
dc.identifier.citedreferenceDurieux A‐C, Vignaud A, Prudhon B, Viou MT, Beuvin M, Vassilopoulos S, Fraysse B, Ferry A, Lainé J, Romero NB et al. ( 2010 ) A centronuclear myopathy‐dynamin 2 mutation impairs skeletal muscle structure and function in mice. Hum Mol Genet 19, 4820 – 4836.
dc.identifier.citedreferenceThiery J, Keefe D, Saffarian S, Martinvalet D, Walch M, Boucrot E, Kirchhausen T & Lieberman J. ( 2010 ) Perforin activates clathrin‐ and dynamin‐dependent endocytosis, which is required for plasma membrane repair and delivery of granzyme B for granzyme‐mediated apoptosis. Blood 115, 1582 – 1593.
dc.identifier.citedreferenceMcNeil PL, Miyake K & Vogel SS ( 2003 ) The endomembrane requirement for cell surface repair. Proc Natl Acad Sci USA 100, 4592 – 4597.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.