Show simple item record

An Improbable Collaboration

dc.contributor.authorSouthwood, David J.
dc.contributor.authorKivelson, Margaret G.
dc.date.accessioned2021-01-05T18:46:12Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2021-01-05T18:46:12Z
dc.date.issued2020-12
dc.identifier.citationSouthwood, David J.; Kivelson, Margaret G. (2020). "An Improbable Collaboration." Journal of Geophysical Research: Space Physics 125(12): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/163858
dc.description.abstractFifty years of collaboration between the authors are reviewed. Common themes cover magnetospheric magnetohydrodynamic phenomena: MHD waves, wave‐particle interactions, circulation, global modes and field line resonances in the terrestrial context, and magnetosphere‐moon interactions, transport processes, instabilities, and global structure in the magnetospheres of giant planets. Over the period reviewed, instrumentation has improved, particularly in particle detectors, and interpretations that seemed radical when first suggested are now supported by measurements and seem commonplace.Plain Language SummaryThe authors have worked together for almost 50 years. They met when the existence of the magnetosphere, the volume surrounding the Earth in space that is structured by its planetary magnetic field, had been established for only a decade. They have succeeded since then in showing that, in a field where new discoveries were regularly happening, there is a very useful role for people who, paying attention to the strengths and weaknesses of instrumentation, can move back and forth between theory, simple modeling, data analysis, and back to theory. Magnetohydrodynamics, a theoretical tool that simplifies the description of space plasmas by focusing on averaged responses, has been their key discipline, but some of their key contributions have elucidated the critical role of the energetic particles that depart from average behavior. Through a mix of theory, interpretation of observations, and even leading spacecraft instrument teams, the authors have contributed to understanding most aspects of the large‐scale behavior of the magnetospheric systems at Earth, Jupiter, and Saturn.Key PointsOutline of development of many aspects of basic field and particle interactions in magnetospheresTheories of linear and nonlinear magnetospheric MHD waves and wave‐particle interactionsMHD of giant planet magnetospheres and magnetosphere‐moon interactions
dc.publisherClarendon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJupiter
dc.subject.otherSaturn
dc.subject.otherULF waves
dc.subject.otherglobal dynamics
dc.subject.othermagnetosphere
dc.subject.otherhistory
dc.titleAn Improbable Collaboration
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163858/1/jgra56102.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163858/2/jgra56102_am.pdf
dc.identifier.doi10.1029/2020JA028407
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSiscoe, G. L., Eviatar, A., Thorne, R. M., Richardson, J. D., Bagenal, F., & Sullivan, J. D. ( 1981 ). Ring current impoundment of the Io plasma torus. Journal of Geophysical Research, 86, 8480. https://doi.org/10.1029/JA086iA10p08480
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1989 ). Magnetospheric interchange motions. Journal of Geophysical Research, 94, 299. https://doi.org/10.1029/JA094iA01p00299
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1992 ). On the form of the flow in the magnetosheath. Journal of Geophysical Research, 97, 2873. https://doi.org/10.1029/91JA02446
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1993 ). Mirror instability I: The physical mechanism of linear instability. Journal of Geophysical Research, 98 ( 9181 ).
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1995 ). The formation of slow mode fronts in the magnetosheath. In P. Song & B. U. O. Sonnerup (Eds.), AGU monograph 90, physics of magnetopause (p. 109 ). Washington, DC: AGU.
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1997a ). Frequency doubling in ultralow frequency wave signals. Journal of Geophysical Research, 102, 27151. https://doi.org/10.1029/97JA02534
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1997b ). The magnetic fields of the Galilean moons of Jupiter: The Galileo spacecraft magnetometer results. In C. Barbieri, J. H. Rahe, T. V. Johnson, A. M. Sohus (Eds.), The three Galileos: The man, the spacecraft, the telescope (pp. 299 – 310 ). Dordrecht, Netherlands: Kluwer Acad. Pub. 1997
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 2001 ). A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. Journal of Geophysical Research, 106, 6123. https://doi.org/10.1029/2000JA000236
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 2007 ). Saturnian magnetospheric dynamics: Elucidation of a camshaft model. Journal of Geophysical Research, 112, A12222. https://doi.org/10.1029/2007JA012254
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 2009 ). The source of Saturn’s periodic radio emission. Journal of Geophysical Research, 114, A09201. https://doi.org/10.1029/2008JA013800
dc.identifier.citedreferenceSouthwood, D. J., Kivelson, M. G., Walker, R. J., & Slavin, J. A. ( 1980 ). Io and its plasma environment. Journal of Geophysical Research, 85, 5959. https://doi.org/10.1029/JA085iA11p05959
dc.identifier.citedreferenceSummers, D., & Siscoe, G. L. ( 1985 ). Wave modes of the Io plasma torus. The Astrophysical Journal, 295, 678 – 684. https://doi.org/10.1086/163411
dc.identifier.citedreferenceTakahashi, K., Cheng, C. Z., McEntire, R. W., & Kistler, L. M. ( 1990 ). Observation and theory of Pc5 waves with harmonically related transverse and compressional components. Journal of Geophysical Research, 95, 977. https://doi.org/10.1029/JA095iA02p00977
dc.identifier.citedreferenceThorne, R. M., Williams, D. J., McEntire, R. W., Armstrong, T. P., Stone, S., Bolton, S., Gurnett, D. A., & Kivelson, M. G. ( 1997 ). Galileo evidence for rapid interchange transport in the Io Torus. Geophysical Research Letters, 24, 2131. https://doi.org/10.1029/97GL01788
dc.identifier.citedreferenceVasyliūnas, V. M. ( 1983 ). Plasma distribution and flow. In A. J. Dessler (Ed.), Physics of the Jovian magnetosphere (pp. 395 – 453 ). New York: Cambridge Univ. Press.
dc.identifier.citedreferenceVedenov, A. A., Velikhov, E. P., & Sagdeev, R. Z. ( 1961 ). Stability of plasma. Soviet Physics Uspekhi, 4 ( 2 ), 332. https://doi.org/10.1070/PU1961v004n02ABEH003341
dc.identifier.citedreferenceVogt, M., Kivelson, M. G., Khurana, K. K., Walker, R. J., & Ashour‐Abdalla, M. ( 2014 ). Simulating the effect of centrifugal forces in Jupiter’s magnetosphere. Journal of Geophysical Research: Space Physics, 119, 1925 – 1950. https://doi.org/10.1002/2013JA019381
dc.identifier.citedreferenceWang, Z., Kivelson, M. G., Joy, S., Khurana, K. K., Polanskey, C., Southwood, D. J., & Walker, R. J. ( 1995 ). Solar wind interaction with small bodies: 1. Whistler wing signatures near Galileo’s closest approach to Gaspra and Ida. Advances in Space Research, 16, 47. https://doi.org/10.1016/0273‐1177(95)00208‐v
dc.identifier.citedreferenceWarwick, J. W. ( 1963 ). Dynamic spectra of Jupiter’s decametric emission 1961. The Astrophysical Journal, 137, 41. https://doi.org/10.1086/147484
dc.identifier.citedreferenceWilson, R. G., Warwick, J. W., Dulk, G. A., & Libby, W. F. ( 1968 ). Europa and the decametric radiation from Jupiter. Nature, 220, 1218. https://doi.org/10.1038/2201218a0
dc.identifier.citedreferenceWilson, R. G., Warwick, J. W., & Libby, W. F. ( 1968 ). Fifth source of Jupiter decametric radiation. Nature, 220, 1215. https://doi.org/10.1038/2201215a0
dc.identifier.citedreferenceYates, J. N., Achilleos, N., & Guio, P. ( 2012 ). Influence of upstream solar wind on thermospheric flows at Jupiter. Planetary and Space Science, 61, 15 – 31. https://doi.org/10.1016/j.pss.2011.08.007
dc.identifier.citedreferenceYates, J. N., Southwood, D. J., Dougherty, M. K., Sulaiman, A. H., Masters, A., Cowley, S. W. H., Kivelson, M. G., Chen, C. H. K., Provan, G., Mitchell, D. G., Hospodarsky, G. B., Achilleos, N., Sorba, A. M., & Coates, A. J. ( 2016 ). Saturn’s quasi‐periodic magnetohydrodynamic waves. Geophysical Research Letters, 43, 102 – 111. https://doi.org/10.1002/2015GL071069
dc.identifier.citedreferenceZwan, B. J., & Wolf, R. A. ( 1976 ). Depletion of solar wind plasma near a planetary boundary. Journal of Geophysical Research, 81, 1636–1648. https://doi.org/10.1029/JA081i010p01636
dc.identifier.citedreferenceDrake, F. D., & Hvatum, S. ( 1959 ). Non‐thermal microwave radiation. Astronomy Journal, 64 ( 8 ), 329 – 330. https://doi.org/10.1086/108047
dc.identifier.citedreferenceDrell, S. D., Foley, H. M., & Ruderman, M. A. ( 1965 ). Drag and propulsion of large satellites in the ionosphere: An Alfven propulsion engine in space. Journal of Geophysical Research, 70, 3131. https://doi.org/10.1029/JZ070i013p03131
dc.identifier.citedreferenceAlfvén, H. ( 1950 ). Cosmical Electrodynamics, International Series of Monographs on Physics. Oxford: Clarendon Press.
dc.identifier.citedreferenceAxford, W. I., & Hines, C. O. ( 1961 ). A unifying theory of high‐latitude geophysical phenomena and geomagnetic storms. Canadian Journal of Physics, 39, 1433. https://doi.org/10.1139/p61‐172
dc.identifier.citedreferenceAxford, W. I., Petschek, H. E., & Siscoe, G. L. ( 1965 ). Tail of the magnetosphere. Journal of Geophysical Research, 70, 1231. https://doi.org/10.1029/JZ070i005p01231
dc.identifier.citedreferenceBarfield, J. N., McPherron, R. L., Coleman, P. J. Jr., & Southwood, D. J. ( 1972 ). Storm‐associated Pc5 micropulsation events observed at the synchronous equatorial orbit. Journal of Geophysical Research, 77, 143. https://doi.org/10.1029/JA077i001p00143
dc.identifier.citedreferenceBigg, E. K. ( 1964 ). Influence of the satellite Io on Jupiter’s decametric emission. Nature, 203, 1008. https://doi.org/10.1038/2031008a0
dc.identifier.citedreferenceBogott, F. H., & Mozer, F. S. ( 1974 ). Drifting energetic particle bunches observed on ATS 5. Journal of Geophysical Research, 79, 182. https://doi.org/10.1029/JA079i013p01825
dc.identifier.citedreferenceBurke, F. F., & Franklin, K. L. ( 1955 ). Observations of a variable radio source associated with the planet Jupiter. Journal of Geophysical Research, 60, 213. https://doi.org/10.1029/JZ060i002p00213
dc.identifier.citedreferenceCheng, A. F. ( 1985 ). Magnetospheric interchange instability. Journal of Geophysical Research, 90, 9900. https://doi.org/10.1029/JA090iA10p09900
dc.identifier.citedreferenceChust, T., Roux, A., Kurth, W. S., Gurnett, D. A., Kivelson, M. G., & Khurana, K. K. ( 2005 ). Are Io’s Alfven wings filamented? Galileo observations. Planetary and Space Science, 53, 395. https://doi.org/10.1016/j.pss.2004.09.021
dc.identifier.citedreferenceClarke, J. T., Nichols, J., Gérard, J.‐C., Grodent, D., Hansen, K. C., Kurth, W. S., Gladstone, G. R., Duval, J., Wannawichian, S., Bunce, E., Cowley, S. W. H., Crary, F., Dougherty, M., Lamy, L., Mitchell, D., Pryor, W., Retherford, K., Stallard, T., Zieger, B., Zarka, P., & Cecconi, B. ( 2009 ). Response of Jupiter’s and Saturn’s auroral activity to the solar wind. Journal of Geophysical Research, 114, A05210. https://doi.org/10.1029/2008JA013694
dc.identifier.citedreferenceClaudepierre, S. G., Mann, I. R., Takahashi, K., Fennell, J. F., Hudson, M. K., Blake, J. B., Roeder, J. L., Clemmons, J. H., Spence, H. E., Reeves, G. D., Baker, D. N., Funsten, H. O., Friedel, R. H. W., Henderson, M. G., Kletzing, C. A., Kurth, W. S., MacDowall, R. J., Smith, C. W., & Wygant, J. R. ( 2013 ). Van Allen probes observation of localized drift resonance between poloidal mode ultra‐low frequency waves and 60 keV electrons. Geophysical Research Letters, 40, 4491 – 4497. https://doi.org/10.1002/grl.50901
dc.identifier.citedreferenceClow, D. ( 2013 ). Flying in deep space: The Galileo mission to Jupiter (Part 1: A very excellent instrument). Quest, 20, 12.
dc.identifier.citedreferenceColeman, P. J. Jr. ( 1970 ). In V. Manno, D. E. Page, D. Reidel (Eds.), Geomagnetic storms at ATS 1, in Intercorrelated satellite observations related to solar events. Norwell: Mass.
dc.identifier.citedreferenceCompton, A. H., & Getting, I. A. ( 1935 ). An apparent effect of galactic rotation on the intensity of cosmic rays. Physics Review, 47 ( 11 ), 817. https://doi.org/10.1103/PhysRev.47.817
dc.identifier.citedreferenceCowley, S. W. H., & Bunce, E. J. ( 2001 ). Origin of the main auroral oval in Jupiter’s coupled magnetosphere–ionosphere system. Planetary and Space Science, 49, 1067. https://doi.org/10.1016/S0032‐0633(00)00167‐7
dc.identifier.citedreferenceCummings, W. D., O’Sullivan, R. J., & Coleman, P. J. Jr. ( 1969 ). Standing Alfvén waves in the magnetosphere. Journal of Geophysical Research, 74, 778. https://doi.org/10.1029/JA074i003p00778
dc.identifier.citedreferenceDeForest, S. E., & McIlwain, C. E. ( 1971 ). Plasma clouds in the magnetosphere. Journal of Geophysical Research, 76, 3587. https://doi.org/10.1029/JA076i016p03587
dc.identifier.citedreferenceDougherty, M. K., Khurana, K. K., Neubauer, F. M., Russell, C. T., Saur, J., Leisner, J. S., & Burton, M. E. ( 2006 ). Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science, 311, 1405. https://doi.org/10.1126/science.1120985
dc.identifier.citedreferenceDungey, J. W. ( 1954 ). Scientific report on “Electrodynamics of the outer atmosphere”, Scientific Report No. 69. University Park, PA: Pennsylvania State University.
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6, 47. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceDungey, J. W. ( 1966 ). Survey of acceleration and diffusion. In B. M. McCormack (Ed.), Radiation trapped in the Earth’s magnetic field Astrophysics and Space Science Library (A Series of Books on the Developments of Space Science and of General Geophysics and Astrophysics Published in Connection with the Journal Space Science Reviews) (Vol. 5, pp. 389 – 397 ). Dordrecht: Springer. https://doi.org/10.1007/978‐94‐010‐3553‐8_29
dc.identifier.citedreferenceDungey, J. W., & Southwood, D. J. ( 1970 ). Ultralow frequency waves in the magnetosphere. Space Science Reviews, 10, 672 – 688. https://doi.org/10.1007/BF00171551
dc.identifier.citedreferenceEngebretson, M. J., Zanetti, L. J., Potemra, T. A., & Acuna, M. H. ( 1986 ). Harmonically structured ULF pulsations observed by the AMPTE CCE magnetic field experiment. Geophysical Research Letters, 13, 905. https://doi.org/10.1029/GL013i009p00905
dc.identifier.citedreferenceEspinosa, S. A., & Dougherty, M. K. ( 2000 ). Periodic perturbations in Saturn’s magnetic field. Geophysical Research Letters, 27, 2785 – 2788. https://doi.org/10.1029/2000GL000048
dc.identifier.citedreferenceEspinosa, S. A., & Dougherty, M. K. ( 2001 ). Unexpected periodic perturbations in Saturn’s magnetic field data from Pioneer 11 and Voyager 2. Advances in Space Research, 28 ( 919–924 ), 2001. https://doi.org/10.1016/S0273‐1177(01)00518‐X
dc.identifier.citedreferenceEspinosa, S. A., Southwood, D. J., & Dougherty, M. K. ( 2003a ). Reanalysis of Saturn’s magnetospheric field data view of spin‐periodic perturbations. Journal of Geophysical Research, 108, 1085. https://doi.org/10.1029/2001JA005083
dc.identifier.citedreferenceEspinosa, S. A., Southwood, D. J., & Dougherty, M. K. ( 2003b ). How can Saturn impose its rotation period in a non‐corotating magnetosphere? Journal of Geophysical Research, 108, 1086. https://doi.org/10.1029/2001JA005084
dc.identifier.citedreferenceFrank, L. A. ( 1970 ). Direct detection of asymmetric increases of extraterrestrial “ring current” proton intensities in the outer radiation zone. Journal of Geophysical Research, 75, 1263. https://doi.org/10.1029/JA075i007p01263
dc.identifier.citedreferenceGalopeau, P. H. M., Zarka, P., & Le Quéau, D. ( 1995 ). Source location of Saturn’s kilometric radiation: The Kelvin‐Helmholtz instability hypothesis. Journal of Geophysical Research, 100, 26,397 – 26,410. https://doi.org/10.1029/95JE02132
dc.identifier.citedreferenceGold, T. ( 1959 ). Motions in the magnetosphere of the earth. Journal of Geophysical Research, 64, 1219. https://doi.org/10.1029/JZ064i009p01219
dc.identifier.citedreferenceGoldreich, P., & Farmer, A. J. ( 2007 ). Spontaneous symmetry breaking of the external field of Saturn. Journal of Geophysical Research, 112, A05225. https://doi.org/10.1126/science.1138562
dc.identifier.citedreferenceGoldreich, P., & Lynden‐Bell, D. ( 1969 ). Io, a Jovian unipolar inductor. The Astrophysical Journal, 156, 59. https://doi.org/10.1086/149947
dc.identifier.citedreferenceGurnett, D., Persoon, A., M, A., Kurth, W. S., Groene, J. B., Averkamp, T. F., Dougherty, M. K., & Southwood, D. J. ( 2007 ). The rotation of the inner region of Saturn’s plasma disk. Science, 309, 442 – 445. https://doi.org/10.1126/science.1138562
dc.identifier.citedreferenceGurnett, D. A., Groene, J. B., Persoon, A. M., Menietti, J. D., Ye, S.‐Y., Kurth, W. S., MacDowall, R. J., & Lecacheux, A. ( 2010 ). The reversal of the rotational modulation rates of the north and south components of Saturn kilometric radiation near equinox. Geophysical Research Letters, 37, L24101. https://doi.org/10.1029/2010GL045796
dc.identifier.citedreferenceGurnett, D. A., Kurth, W. S., Hosparadarsky, G. B., Persoon, A. M., Zarka, P., Lecacheux, A., Bolton, S. J., Desch, M. D., Farrell, W. M., Kaiser, M. L., Ladreiter, H.‐P., Rucker, H. O., Galopeau, P., Louarn, P., Young, D. T., Pryor, W. R., & Dougherty, M. K. ( 2002 ). Control of Jupiter’s radio emission and aurorae by the solar wind. Nature, 415, 985. https://doi.org/10.1038/415985a
dc.identifier.citedreferenceHess, S. L. G., Echer, E., & Zarka, P. ( 2012 ). Solar wind pressure effects on Jupiter decametric radio emissions independent of Io. Planetary and Space Science, 70, 114. https://doi.org/10.1016/j.pss.2012.05.011
dc.identifier.citedreferenceHess, S. L. G., Echer, E., Zarka, P., Lamy, L., & Delamere, P. A. ( 2014 ). Multi‐instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planetary and Space Science, 99, 136 – 148. https://doi.org/10.1016/j.pss.2014.05.015
dc.identifier.citedreferenceHiguchi, T., Kokubun, S., & Ohtani, S. ( 1986 ). Harmonic structure of compressional Pc 5 pulsations at synchronous orbit. Geophysical Research Letters, 13, 1101. https://doi.org/10.1029/GL013i011p01101
dc.identifier.citedreferenceHill, T. W., Dessler, A. J., & Maher, L. J. ( 1981 ). Corotating magnetospheric convection. Journal of Geophysical Research, 86, 9020. https://doi.org/10.1029/JA086iA11p09020
dc.identifier.citedreferenceHughes, W. J., & Southwood, D. J. ( 1974 ). Effect of atmosphere and ionosphere on magnetospheric micropulsation signals. Nature, 248, 493. https://doi.org/10.1038/248493b0
dc.identifier.citedreferenceHughes, W. J., & Southwood, D. J. ( 1976 ). The screening of micropulsation signals by the atmosphere and the ionosphere. Journal of Geophysical Research, 81, 3234. https://doi.org/10.1029/JA081i019p03234
dc.identifier.citedreferenceJia, X., & Kivelson, M. G. ( 2016 ). Dawn‐dusk asymmetries in rotating magnetospheres: Lessons from modeling Saturn. Journal of Geophysical Research: Space Physics, 121, 1413 – 1424. https://doi.org/10.1002/2015JA021950
dc.identifier.citedreferenceJia, X., Kivelson, M. G., & Gombosi, T. I. ( 2012 ). Driving Saturn’s magnetospheric periodicities from the upper atmosphere/ionosphere. Journal of Geophysical Research, 117, A04215. https://doi.org/10.1029/2011JA017367
dc.identifier.citedreferenceJia, X., Walker, R. J., Kivelson, M. G., Khurana, K. K., & Linker, J. A. ( 2009 ). Properties of Ganymede’s magnetosphere inferred from improved three‐dimensional MHD simulations. Journal of Geophysical Research, 114, A09209. https://doi.org/10.1029/2009JA014375
dc.identifier.citedreferenceJohnson, F. S. ( 1960 ). The gross character of the geomagnetic field in the solar wind. Journal of Geophysical Research, 65, 3049. https://doi.org/10.1029/JZ065i010p03049
dc.identifier.citedreferenceJoy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K., K, K., Russell, C. T., & Ogino, T. ( 2002 ). Probabilistic models of the Jovian magnetopause and bow shock locations. Journal of Geophysical Research, 107 (A10), 1309. https://doi.org/10.1029/2001JA009146
dc.identifier.citedreferenceJoy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., & Paterson, W. P. ( 2006 ). Mirror mode structures in the Jovian magnetosheath. Journal of Geophysical Research, 111, A12212. https://doi.org/10.1029/2006JA011985
dc.identifier.citedreferenceKaye, S. M., Kivelson, M. G., & Southwood, D. J. ( 1979 ). Evolution of ion cyclotron instability in the plasma convection system of the magnetosphere. Journal of Geophysical Research, 84, 6397. https://doi.org/10.1029/JA084iA11p06397
dc.identifier.citedreferenceKennel, C. F., & Coroniti, F. V. ( 1975 ). Is Jupiter’s magnetosphere like a pulsar’s or Earth’s. Space Science Reviews, 17 ( 6 ), 857 – 883. https://doi.org/10.1007/bf00777259
dc.identifier.citedreferenceKhurana, K. K. ( 1997 ). Euler potential models of Jupiter’s magnetospheric field. Journal of Geophysical Research, 102, 11,295 – 11,306. https://doi.org/10.1029/97JA00563
dc.identifier.citedreferenceKhurana, K. K., & Kivelson, M. G. ( 1989 ). Ultralow frequency MHD waves in Jupiter’s middle magnetosphere. Journal of Geophysical Research, 94, 5241. https://doi.org/10.1029/JA094iA05p05241
dc.identifier.citedreferenceKhurana, K. K., Kivelson, M. G., & Russell, C. T. ( 1997 ). Interaction of Io with its torus: Does Io have an internal magnetic field? Geophysical Research Letters, 24, 2391. https://doi.org/10.1029/97GL02507
dc.identifier.citedreferenceKhurana, K. K., Kivelson, M. G., Vasyliūnas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk, B. H., & Kurth, W. S. ( 2004 ). Chapter 24—The configuration of Jupiter’s magnetosphere. In F. Bagenal, T. Dowling, W. McKinnon (Eds.), Jupiter: The planet, satellites and magnetosphere (p. 1 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceKivelson, M. G. ( 2015 ). Planetary magnetodiscs: Some unanswered questions. Space Science Reviews, 187 ( 1–4 ), 5 – 21. https://doi.org/10.1007/s11214‐014‐0046‐6
dc.identifier.citedreferenceKivelson, M. G., Etcheto, J., & Trotignon, J. G. ( 1984 ). Global compressional oscillations of the terrestrial magnetosphere: The evidence and a model. Journal of Geophysical Research, 89, 9851. https://doi.org/10.1029/JA089iA11p09851
dc.identifier.citedreferenceKivelson, M. G., & Jia, X. ( 2014 ). Control of periodic variations in Saturn’s magnetosphere by compressional waves. Journal of Geophysical Research: Space Physics, 119, 8030 – 8045. https://doi.org/10.1002/2014JA020258
dc.identifier.citedreferenceKivelson, M. G., Kennel, C. F., McPherron, R. L., Russell, C. T., Southwood, D. J., Walker, R. J., Hammond, C. M., Khurana, K. K., Strangeway, R. J., & Coleman, P. J. ( 1991 ). Magnetic field studies of the solar wind interaction with Venus from the Galileo flyby. Science, 253, 1518. https://doi.org/10.1126/science.253.5027.1518
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., Russell, C. T., Volwerk, M., Joy, S. P., Walker, R. J., Zimmer, C., & Linker, J. A. ( 2001 ). Magnetized or unmagnetized: Ambiguity persists following Galileo’s encounters with Io in 1999 and 2000. Journal of Geophysical Research, 106, 26121. https://doi.org/10.1029/2000JA002510
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., Russell, C. T., & Walker, R. J. ( 1997 ). Intermittent short‐duration plasma‐field anomalies in the Io plasma torus: Evidence for interchange in the Io plasma torus? Geophysical Research Letters, 24, 2127. https://doi.org/10.1029/97GL02202
dc.identifier.citedreferenceKivelson, M. G., Khurana, K. K., Russell, C. T., Walker, R. J., Warnecke, J., Coroniti, F. V., Polanskey, C., Southwood, D. J., & Schubert, G. ( 1996 ). Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature, 384 ( 537 ), 1996. https://doi.org/10.1038/384537a0
dc.identifier.citedreferenceKivelson, M. G., Prevost, A., Coroniti, F. V., Khurana, K. K., & Southwood, D. J. ( 1995a ). Galileo flybys of Earth: The nature of the distant shock. Advances in Space Research, 16, 197. https://doi.org/10.1016/0273‐1177(95)00230‐C
dc.identifier.citedreferenceKivelson, M. G., Slavin, J. A., & Southwood, D. J. ( 1979 ). Magnetospheres of the Galilean satellites. Science, 205, 491. https://doi.org/10.1126/science.205.4405.491
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1975a ). Local time variations of particle flux produced by an electrostatic field in the magnetosphere. Journal of Geophysical Research, 80, 56. https://doi.org/10.1029/JA080i001p00056
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1975b ). Approximations for the study of drift boundaries in the magnetosphere. Journal of Geophysical Research, 80, 3525. https://doi.org/10.1029/JA080i025p03528
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1975c ). Note on the electric splitting of drift shells. Journal of Geophysical Research, 80, 3528. https://doi.org/10.1029/JA080i025p03525
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1983 ). Charged particle behavior in low frequency geomagnetic pulsations: 3. Spin phase dependence. Journal of Geophysical Research, 88, 174. https://doi.org/10.1029/JA088iA01p00174
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1985a ). Charged particle behavior in low frequency geomagnetic pulsations, 4. Compressional waves. Journal of Geophysical Research, 90, 1486 – 1498. https://doi.org/10.1029/JA090iA02p01486
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1985b ). Resonant ULF waves: A new interpretation. Geophysical Research Letters, 12, 49 – 52. https://doi.org/10.1029/GL012i001p00049
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1986 ). Coupling of global magnetospheric MHD eigenmodes to field line resonances. Journal of Geophysical Research, 91 ( A4 ), 4345 – 4351. https://doi.org/10.1029/JA091iA04p04345
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 1996 ). Mirror instability II: The mechanism of non‐linear saturation. Journal of Geophysical Research, 101, 17365. https://doi.org/10.1029/96JA01407
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 2003 ). First evidence of IMF control of Jovian magnetospheric boundary locations: Cassini and Galileo magnetic field measurements compared. Planetary and Space Science, 51, 891. https://doi.org/10.1016/S0032‐0633(03)00075‐8
dc.identifier.citedreferenceKivelson, M. G., & Southwood, D. J. ( 2005 ). Dynamical consequences of two modes of centrifugal instability in Jupiter’s outer magnetosphere. Journal of Geophysical Research, 110, A12209. https://doi.org/10.1029/2005JA011176
dc.identifier.citedreferenceKivelson, M. G., Wang, Z., Joy, S., Khurana, K. K., Polanskey, C., Southwood, D. J., & Walker, R. J. ( 1995b ). Solar wind interaction with small bodies: 2. What can Galileo’s detection of magnetic rotations tell us about Gaspra and Ida. Advances in Space Research, 16, 59. https://doi.org/10.1016/0273‐1177(95)00209‐W
dc.identifier.citedreferenceKonradi, A., Williams, D. J., & Fritz, T. A. ( 1973 ). Energy spectra and pitch angle distributions of storm time and substorm injected protons. Journal of Geophysical Research, 78, 4739. https://doi.org/10.1029/JA078i022p04739
dc.identifier.citedreferenceKrimigis, S. M., Armstrong, T. P., Axford, W. I., Bostrom, C. O., Fan, C. Y., Gloeckler, G., Lanzerotti, L. J., Keath, E. P., Zwickl, R. D., Carbary, J. F., & Hamilton, D. C. ( 1979 ). Low‐energy charged particle environment at Jupiter: A first look. Science, 204, 998. https://doi.org/10.1126/science.204.4396.998
dc.identifier.citedreferenceKurth, W. S., Lecacheux, A., Averkamp, T. F., Groene, J. B., & Gurnett, D. A. ( 2007 ). A Saturnian longitude system based on a variable kilometric radiation period. Geophysical Research Letters, 34, L02201. https://doi.org/10.1029/2006GL028336
dc.identifier.citedreferenceLanzerotti, L. J., Armstrong, T. P., Maclennan, C. G., Simnett, G. M., Cheng, A. F., Gold, R. E., Thomson, D. J., Krimigis, S. M., Anderson, K. A., Hawkins, S. E., Pick, M., Roelof, E. C., Sarris, E. T., & Tappin, S. J. ( 1993 ). Measurements of hot plasmas in the magnetosphere of Jupiter. Planetary and Space Science, 41, 893 – 917. https://doi.org/10.1016/0032‐0633(93)90096‐K
dc.identifier.citedreferenceLezniak, T. W., & Winckler, J. R. ( 1970 ). Experimental study of magnetospheric motions and the acceleration of energetic electrons during substorms. Journal of Geophysical Research, 75, 7075. https://doi.org/10.1029/JA075i034p07075
dc.identifier.citedreferenceLinker, J. A., Kivelson, M. G., & Walker, R. J. ( 1988 ). An MHD simulation of plasma flow past Io: Alfven and slow mode perturbations. Geophysical Research Letters, 15, 1311. https://doi.org/10.1029/GL015i011p01311
dc.identifier.citedreferenceManners, H., Masters, A., & Yates, J. N. ( 2018 ). Standing Alfvén waves in Jupiter’s magnetosphere as a source of ∼10‐ to 60‐min quasiperiodic pulsations. Geophysical Research Letters, 45, 8746 – 8754. https://doi.org/10.1029/2018GL078891
dc.identifier.citedreferenceMarshall, L., & Libby, W. F. ( 1967 ). Stimulation of Jupiter’s radio emission by Io. Nature, 214, 126. https://doi.org/10.1038/214126a0
dc.identifier.citedreferenceMelrose, D. B. ( 1967 ). Rotational effects on the distribution of thermal plasma in the magnetosphere of Jupiter. Planetary and Space Science, 15, 381. https://doi.org/10.1016/0032‐0633(67)90202‐4
dc.identifier.citedreferenceMorabito, L. A., Synnott, S. P., Kupferman, P. N., & Collins, S. A. ( 1979 ). Discovery of currently active extraterrestrial volcanism. Science, 204 ( 4396 ), 972. https://doi.org/10.1126/science.204.4396.972
dc.identifier.citedreferenceMorris, D., & Berge, G. L. ( 1962 ). Measurements of the polarization and angular extent of the decimetric radiation of Jupiter. The Astrophysical Journal, 136, 276. https://doi.org/10.1086/147372
dc.identifier.citedreferenceNess, N. F., Acuña, M. H., Lepping, R. P., Burlaga, L. F., Behannon, K. W., & Neubauer, F. M. ( 1979 ). Magnetic field studies at Jupiter by Voyager 1: Preliminary results. Science, 204 ( 4396 ), 982 – 987. https://doi.org/10.1126/science.204.4396.982
dc.identifier.citedreferenceNeubauer, F. M. ( 1978 ). Possible strengths of dynamo magnetic fields of the Galilean satellites and of Titan. Geophysical Research Letters, 5, 905. https://doi.org/10.1029/GL005i011p00905
dc.identifier.citedreferenceNeubauer, F. M. ( 1980 ). Nonlinear standing Alfven wave current system at lo: Theory. Journal of Geophysical Research, 85 ( ll71 ). https://doi.org/10.1029/JA085iA03p01171
dc.identifier.citedreferenceNorthrop, T. G., & Teller, E. ( 1960 ). Stability of the adiabatic motion of charged particles in the Earth’s field. Physics Review, 117, 215. https://doi.org/10.1103/PhysRev.117.215
dc.identifier.citedreferencePfitzer, K. A., & Winckler, J. R. ( 1969 ). Intensity correlations and substorm electron drift effects in the outer radiation belt measured with the Ogo 3 and ATS 1 satellites. Journal of Geophysical Research, 74, 5005. https://doi.org/10.1029/JA074i021p05005
dc.identifier.citedreferencePiddington, J. H., & Drake, J. F. ( 1968 ). Electrodynamic effects of Jupiter’s satellite Io. Nature, 217, 935. https://doi.org/10.1038/217935a0
dc.identifier.citedreferencePrangé, R., Pallier, L., Hansen, K. C., Howard, R., Vourlidas, A., Courtin, R., & Parkinson, C. ( 2004 ). An interplanetary shock traced by planetary auroral storms from the Sun to Saturn. Nature, 432 ( 7013 ), 78 – 81. https://doi.org/10.1038/nature02986
dc.identifier.citedreferenceRichardson, J. D., & McNutt, R. L. Jr. ( 1987 ). Observational constraints on interchange models at Jupiter. Geophysical Research Letters, 14, 64. https://doi.org/10.1029/GL014i001p00064
dc.identifier.citedreferenceRusaitis, L., Kivelson, M., Khurana, K. K., & Walker, R. J. ( 2019 ). What makes Saturn’s magnetosphere beat with one‐hour periodicity?, Abstract SM33E–3262, 2019. San Francisco: AGU.
dc.identifier.citedreferenceRussell, C. T., Kivelson, M. G., Kurth, W. S., & Gurnett, D. A. ( 2000 ). Implications of depleted flux tubes in the Jovian magnetosphere. Geophysical Research Letters, 27, 3133. https://doi.org/10.1029/2000GL003815
dc.identifier.citedreferenceRussell, C. T., Wang, Y. L., Blanco‐Cano, X., & Strangeway, R. J. ( 2001 ). The Io mass‐loading disk: Constraints provided by ion cyclotron wave observations. Journal of Geophysical Research, 106, 26,233 – 26,242. https://doi.org/10.1029/2001JA900029
dc.identifier.citedreferenceSamson, J. C., Harrold, B. G., Ruohoniemi, J. M., & Walker, A. D. M. ( 1992 ). Field line resonances associated with MHD waveguides in the magnetosphere. Geophysical Research Letters, 19, 441. https://doi.org/10.1029/92GL00116
dc.identifier.citedreferenceSinger, H. J., Southwood, D. J., Walker, R. J., & Kivelson, M. G. ( 1981 ). Alfven wave resonances in a realistic magnetospheric field geometry. Journal of Geophysical Research, 86, 4589. https://doi.org/10.1029/JA086iA06p04589
dc.identifier.citedreferenceSong, P., Russell, C. T., Gosling, J. T., Thomsen, M. F., & Elphic, R. C. ( 1990 ). Observations of the density profile in the magnetosheath near the stagnation streamline. Geophysical Research Letters, 17, 2035. https://doi.org/10.1029/GL017i011p02035
dc.identifier.citedreferenceSong, P., Russell, C. T., & Thomsen, M. F. ( 1992 ). Slow mode transition in the frontside magnetosheath. Journal of Geophysical Research, 97, 8295. https://doi.org/10.1029/92JA00381
dc.identifier.citedreferenceSouthwood, D. ( 2015 ). From the Carrington storm to the Dungey magnetosphere. In D. Southwood, S. W. H. Cowley, S. Mitton (Eds.), Magnetospheric plasma physics: The impact of Jim Dungey’s research, Astrophysics and Space Science Proceedings (Vol. 41, Chap. 12, p. 253 ). New York: Springer.
dc.identifier.citedreferenceSouthwood, D. J. ( 1968 ). The hydromagnetic stability of the magnetospheric boundary. Planetary and Space Science, 16, 587. https://doi.org/10.1016/0032‐0633(68)90100‐1
dc.identifier.citedreferenceSouthwood, D. J. ( 1974 ). Some features of field line resonances in the magnetosphere. Planetary and Space Science, 22, 483. https://doi.org/10.1016/0032‐0633(74)90078‐6
dc.identifier.citedreferenceSouthwood, D. J. ( 1976 ). A general approach to low‐frequency instability in the ring current plasma. Journal of Geophysical Research, 81, 3340. https://doi.org/10.1029/JA081i019p03340
dc.identifier.citedreferenceSouthwood, D. J., & Chané, E. ( 2016 ). High‐latitude circulation in giant planet magnetospheres. Journal of Geophysical Research: Space Physics, 121, 5394 – 5403. https://doi.org/10.1002/2015JA022310
dc.identifier.citedreferenceSouthwood, D. J., & Cowley, S. W. H. ( 2014 ). The origin of Saturn’s magnetic periodicities: Northern and southern current systems. Journal of Geophysical Research: Space Physics, 119, 1563 – 1571. https://doi.org/10.1002/2013JA019632
dc.identifier.citedreferenceSouthwood, D. J., Dougherty, M. K., Canu, P., Balogh, A., & Kellogg, P. J. ( 1993 ). Correlations between magnetic field and electron density observations during the inbound Ulysses Jupiter flyby. Planetary and Space Science, 41, 919. https://doi.org/10.1016/0032‐0633(93)90097‐L
dc.identifier.citedreferenceSouthwood, D. J., Dungey, J. W., & Etherington, R. G. ( 1969 ). Bounce resonant interaction between pulsations arid trapped particles. Planetary and Space Science, 17, 349. https://doi.org/10.1016/0032‐0633(69)90068‐3
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1975 ). An approximate analytic description of plasma bulk parameters and pitch angle anisotropy under adiabatic flow in a dipolar magnetospheric field. Journal of Geophysical Research, 80, 2069. https://doi.org/10.1029/JA080i016p02069
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1981 ). Charged particle behavior in low‐frequency geomagnetic pulsations. 1. Transverse waves. Journal of Geophysical Research, 86, 5643. https://doi.org/10.1029/JA086iA07p05643
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1982 ). Charged particle behavior in low frequency geomagnetic pulsations: 2. Graphical approach. Journal of Geophysical Research, 87, 1707. https://doi.org/10.1029/JA087iA03p01707
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1986 ). The effect of parallel inhomogeneity on magnetospheric hydromagnetic wave coupling. Journal of Geophysical Research, 91, 6871. https://doi.org/10.1029/JA091iA06p06871
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1987 ). Magnetospheric interchange instability. Journal of Geophysical Research, 92, 109. https://doi.org/10.1029/JA092iA01p00109
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.