Show simple item record

Practical energy densities, cost, and technical challenges for magnesium- sulfur batteries

dc.contributor.authorRazaq, Rameez
dc.contributor.authorLi, Ping
dc.contributor.authorDong, Yulong
dc.contributor.authorLi, Yao
dc.contributor.authorMao, Ya
dc.contributor.authorBo, Shou‐hang
dc.date.accessioned2021-01-05T18:46:31Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2021-01-05T18:46:31Z
dc.date.issued2020-12
dc.identifier.citationRazaq, Rameez; Li, Ping; Dong, Yulong; Li, Yao; Mao, Ya; Bo, Shou‐hang (2020). "Practical energy densities, cost, and technical challenges for magnesium- sulfur batteries." EcoMat 2(4): n/a-n/a.
dc.identifier.issn2567-3173
dc.identifier.issn2567-3173
dc.identifier.urihttps://hdl.handle.net/2027.42/163868
dc.description.abstractAmid burgeoning environmental concerns, electrochemical energy storage has rapidly gained momentum. Among the contenders in the - beyond lithium- energy storage arena, the magnesium- sulfur (Mg/S) battery has emerged as particularly promising, owing to its high theoretical energy density. However, the gap between fundamental research and practical application is still hindering the commercialization of Mg/S batteries. Here, through reviewing the recent developments of Mg/S batteries technologies, especially with respect to energy density and cost, we present the primary technical challenges on both materials and device level to surpass the energy density and cost- effectiveness of lithium- ion battery. While the high electrolyte- sulfur ratio and the expensive liquid electrolyte are significantly limiting the practical application of Mg/S batteries, we found that solid- state Mg electrolyte appears to be a feasible solution on the basis of energy density and cost evaluation.Rechargeable magnesium- sulfur (Mg/S) batteries represent one of the most attractive electrochemical systems, in terms of energy density, safety, and cost. We summarize the current status of Mg/S batteries in view of materials development, and comparative study of current literature. We also systematically investigate the relationships between the gravimetric and volumetric energy density, cost, and other parameters and offer some perspectives in the area of Mg/S batteries.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othercost analysis
dc.subject.othermagnesium- sulfur battery
dc.subject.otherpractical energy density
dc.subject.othersolid- state electrolytes
dc.titlePractical energy densities, cost, and technical challenges for magnesium- sulfur batteries
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEnvironmental Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163868/1/eom212056.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163868/2/eom212056-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163868/3/eom212056_am.pdf
dc.identifier.doi10.1002/eom2.12056
dc.identifier.sourceEcoMat
dc.identifier.citedreferenceZhao- Karger Z, Liu R, Dai W, et al. Toward highly reversible magnesium- sulfur batteries with efficient and practical Mg[B(hfip)4]2 electrolyte. ACS Energy Lett. 2018; 3: 2005 - 2013.
dc.identifier.citedreferenceCha E, Patel MD, Park J, et al. 2D MoS 2 as an efficient protective layer for lithium metal anodes in high- performance Li- S batteries. Nat Nanotechnol. 2018; 13: 337 - 344.
dc.identifier.citedreferenceLv R, Guan X, Zhang J, Xia Y, Luo J. Enabling Mg metal anodes rechargeable in conventional electrolytes by fast ionic transport interphase. Natl Sci Rev. 2020; 7: 333 - 341.
dc.identifier.citedreferenceAurbach D, Gizbar H, Schechter A, et al. Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes. J Electrochem Soc. 2002; 149: A115 - A121.
dc.identifier.citedreferenceZhang J, Guan X, Lv R, Wang D, Liu P, Luo J. Rechargeable Mg metal batteries enabled by a protection layer formed in vivo. Energy Storage Mater. 2020; 26: 408 - 413.
dc.identifier.citedreferenceCanepa P, Gautam GS, Malik R, et al. Understanding the initial stages of reversible mg deposition and stripping in inorganic nonaqueous electrolytes. Chem Mater. 2015; 27: 3317 - 3325.
dc.identifier.citedreferenceCanepa P, Jayaraman S, Cheng L, et al. Elucidating the structure of the magnesium aluminum chloride complex electrolyte for magnesium- ion batteries. Energ Environ Sci. 2015; 8: 3718 - 3730.
dc.identifier.citedreferenceXu Y, Ye Y, Zhao S, et al. In situ X- ray absorption spectroscopic investigation of the capacity degradation mechanism in Mg/S batteries. Nano Lett. 2019; 19: 2928 - 2934.
dc.identifier.citedreferenceCao W, Zhang J, Li H. Batteries with high theoretical energy densities. Energy Storage Mater. 2020; 26: 46 - 55.
dc.identifier.citedreferenceHaynes WM. CRC Handbook of Chemistry and Physics. Boca Raton, London: CRC Press; 2014.
dc.identifier.citedreferenceCui C, Yang C, Eidson N, Chen J, et al. A highly reversible, dendrite- free lithium metal anode enabled by a lithium- fluoride- enriched interphase. Adv Mater. 2020; 32: 1906427.
dc.identifier.citedreferenceKang N, Lin Y, Yang L, et al. Cathode porosity is a missing key parameter to optimize lithium- sulfur battery energy density. NatCommun. 2019; 10: 4597.
dc.identifier.citedreferenceDu A, Zhao Y, Zhang Z, et al. Selenium sulfide cathode with copper foam interlayer for promising magnesium electrochemistry. Energy Storage Mater. 2020; 26: 23 - 31.
dc.identifier.citedreferenceLee B, Choi J, Na S, et al. Critical role of elemental copper for enhancing conversion kinetics of sulphur cathodes in rechargeable magnesium batteries. Appl Surf Sci. 2019; 484: 933 - 940.
dc.identifier.citedreferenceMcCloskey BD. Attainable gravimetric and volumetric energy density of Li- S and li ion battery cells with solid separator- protected Li metal anodes. J Phys Chem Lett. 2015; 6: 4581 - 4588.
dc.identifier.citedreferenceMo R, Tan X, Li F, et al. Tin- graphene tubes as anodes for lithium- ion batteries with high volumetric and gravimetric energy densities. Nat Commun. 2020; 11: 1374.
dc.identifier.citedreferenceYang X, Luo J, Sun X. Towards high- performance solid- state Li- S batteries from fundamental understanding to engineering design. Chem Soc Rev. 2020; 49: 2140 - 2195.
dc.identifier.citedreferenceBetz J, Bieker G, Meister P, Placke T, Winter M, Schmuch R. Theoretical versus practical energy: a plea for more transparency in the energy calculation of different rechargeable battery systems. Adv Energy Mater. 2019; 9: 1803170.
dc.identifier.citedreferenceLiu L, Ren D, Liu F, et al. A review of dissimilar welding techniques for magnesium alloys to aluminum alloys. Materials. 2014; 7: 3735 - 3757.
dc.identifier.citedreferenceSharma J, Hashmi S. Magnesium ion- conducting gel polymer electrolyte nanocomposites: effect of active and passive nanofillers. Polym Compos. 2018; 40: 1295 - 1306.
dc.identifier.citedreferenceTian Y, Shi T, Richards WD, et al. Compatibility issues between electrodes and electrolytes in solid- state batteries. Energ Environ Sci. 2017; 10: 1150 - 1166.
dc.identifier.citedreferenceXiao Y, Wang Y, Bo S- H, et al. Understanding interface stability in solid- state batteries. Nat Rev Mater. 2019; 5: 105 - 126.
dc.identifier.citedreferenceYoo HD, Jokisaari JR, Yu Y- S, et al. Intercalation of magnesium into a layered vanadium oxide with high capacity. ACS Energy Lett. 2019; 4: 1528 - 1534.
dc.identifier.citedreferenceChoi N- S, Chen Z, Freunberger SA, et al. Challenges facing lithium batteries and electrical double- layer capacitors. Angew Chem Int Ed. 2012; 5: 9994 - 10024.
dc.identifier.citedreferenceGoodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010; 22: 587 - 603.
dc.identifier.citedreferenceBieker G, Diddens D, Kolek M, et al. Cation- dependent electrochemistry of polysulfides in lithium and magnesium electrolyte solutions. J Phys Chem C. 2018; 122: 21770 - 21783.
dc.identifier.citedreferencePlacke T, Kloepsch R, Dühnen S, Winter M. Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. J Solid State Electrochem. 2017; 21: 1939 - 1964.
dc.identifier.citedreferenceJanek J, Zeier WG. A solid future for battery development. Nat Energy. 2016; 1: 1 - 4.
dc.identifier.citedreferenceOlivetti EA, Ceder G, Gaustad GG, Fu X. Lithium- ion battery supply chain considerations: analysis of potential bottlenecks in critical metals. Joule. 2017; 1: 229 - 243.
dc.identifier.citedreferenceMcKerracher RD, Ponce de Leon C, Wills RGA, Shah AA, Walsh F. A review of the iron- air secondary battery for energy storage. Chem Plus Chem. 2015; 80: 323 - 335.
dc.identifier.citedreferenceLee J- S, Tai Kim S, Cao R, et al. Metal air batteries with high energy density: Li- air versus Zn- air. Adv Energy Mater. 2011; 1: 34 - 50.
dc.identifier.citedreferenceRahman MA, Wang X, Wen C. High energy density metal- air batteries: a review. J Electrochem Soc. 2013; 160: A1759 - A1771.
dc.identifier.citedreferenceWang ZL, Xu D, Xu JJ, Zhang XB. Oxygen electrocatalysts in metal- air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev. 2014; 43: 7746 - 7786.
dc.identifier.citedreferenceHardwick LJ, de León CP. Rechargeable multi- valent metal- air batteries. Johnson Matthey Technol Rev. 2018; 62: 134 - 149.
dc.identifier.citedreferenceZhang X, Wang X- G, Xie Z, Zhou Z. Recent progress in rechargeable alkali metal- air batteries. Green Energy Environ. 2016; 1: 4 - 17.
dc.identifier.citedreferenceLiu Q, Chang Z, Li Z, Zhang X. Flexible metal- air batteries: progress, challenges, and perspectives. Small Methods. 2018; 2: 1700231.
dc.identifier.citedreferenceXu X, Zhou D, Qin X, et al. A room- temperature sodium- sulfur battery with high capacity and stable cycling performance. Nat Commun. 2018; 9: 3870.
dc.identifier.citedreferenceRobba A, Vizintin A, Bitenc J, et al. Mechanistic study of magnesium- sulfur batteries. Chem Mater. 2017; 29: 9555 - 9564.
dc.identifier.citedreferenceSchmuch R, Wagner R, Hörpel G, Placke T, Winter M. Performance and cost of materials for lithium- based rechargeable automotive batteries. Nat Energy. 2018; 3: 267 - 278.
dc.identifier.citedreferenceBerg EJ, Villevieille C, Streich D, Trabesinger S, Novák P. Rechargeable batteries: grasping for the limits of chemistry. J Electrochem Soc. 2015; 162: A2468 - A2475.
dc.identifier.citedreferenceBruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li- O 2 and Li- S batteries with high energy storage. Nat Mater. 2011; 11: 19 - 29.
dc.identifier.citedreferenceChung SH, Manthiram A. Current status and future prospects of metal- sulfur batteries. Adv Mater. 2019; 31: 1901125.
dc.identifier.citedreferenceHagen M, Hanselmann D, Ahlbrecht K, Maça R, Gerber D, Tübke J. Lithium- sulfur cells: the gap between the state of the art and the requirements for high energy battery cells. Adv Energy Mater. 2015; 5: 1401986.
dc.identifier.citedreferencePolyak D. US Geological Survey, Mineral Commodity Summaries; 2018.
dc.identifier.citedreferenceZhang Z, Dong S, Cui Z, et al. Rechargeable magnesium batteries using conversiontype cathodes: a perspective and minireview. Small Methods. 2018; 2: 1905248.
dc.identifier.citedreferenceWang P, Buchmeiser MR. Rechargeable magnesium- sulfur battery technology: state of the art and key challenges. Adv Funct Mater. 2019; 29: 1905248.
dc.identifier.citedreferenceDavidson R, Verma A, Santos D, et al. Formation of magnesium dendrites during electrodeposition. ACS Energy Lett. 2018; 4: 375 - 376.
dc.identifier.citedreferenceYu X, Manthiram A. Performance enhancement and mechanistic studies of magnesium- sulfur cells with an advanced cathode structure. ACS Energy Lett. 2016; 1: 431 - 437.
dc.identifier.citedreferenceKim HS, Arthur TS, Allred GD, et al. Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat Commun. 2011; 2: 427.
dc.identifier.citedreferenceVinayan BP, Zhao- Karger Z, Diemant T, et al. Performance study of magnesium sulfur battery using a graphene based sulfur composite cathode electrode and a non- nucleophilic Mg electrolyte. Nanoscale. 2016; 8: 3296 - 3306.
dc.identifier.citedreferenceZhao- Karger Z, Zhao X, Wang D, Diemant T, Behm RJ, Fichtner M. Performance improvement of magnesium sulfur batteries with modified non- nucleophilic electrolytes. Adv Energy Mater. 2015; 5: 1401155.
dc.identifier.citedreferenceZu C- X, Li H. Thermodynamic analysis on energy densities of batteries. Energ Environ Sci. 2011; 4: 2614 - 2624.
dc.identifier.citedreferenceChen R, Zhao T, Wu F. From a historic review to horizons beyond: lithium- sulphur batteries run on the wheels. Chem Commun. 2015; 51: 18 - 33.
dc.identifier.citedreferenceManthiram A, Fu Y, Chung SH, Zu C, Su YS. Rechargeable lithium- sulfur batteries. Chem Rev. 2014; 114: 11751 - 11787.
dc.identifier.citedreferenceZhao- Karger Z, Fichtner M. Magnesium- sulfur battery: its beginning and recent progress. MRS Commun. 2017; 7: 770 - 784.
dc.identifier.citedreferenceGuo Z, Zhao S, Li T, Su D, Guo S, Wang G. Recent advances in rechargeable magnesium- based batteries for high- efficiency energy storage. Adv Energy Mater. 2020; 10: 1903591.
dc.identifier.citedreferenceGao T, Ji X, Hou S, et al. Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI 2 - DME electrolyte. Adv Mater. 2018; 30: 1704313.
dc.identifier.citedreferenceVinayan BP, Euchner H, Zhao- Karger Z, et al. Insights into the electrochemical processes of rechargeable magnesium- sulfur batteries with a new cathode design. J Mater Chem A. 2019; 7: 25490 - 25502.
dc.identifier.citedreferenceDu A, Zhang Z, Qu H, et al. An efficient organic magnesium borate- based electrolyte with non- nucleophilic characteristics for magnesium- sulfur battery. Energ Environ Sci. 2017; 10: 2616 - 2625.
dc.identifier.citedreferenceJackle M, Gross A. Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth. J Chem Phys. 2014; 141: 174710.
dc.identifier.citedreferenceEaves- Rathert J, Moyer K, Zohair M, Pint CL. Kinetic- versus diffusion driven three- dimensional growth in magnesium metal battery anodes. Joule. 2020; 4: 1324 - 1336.
dc.identifier.citedreferenceDing MS, Diemant T, Behm RJ, Passerini S, Giffin GA. Dendrite growth in mg metal cells containing Mg(TFSI) 2 /glyme electrolytes. J Electrochem Soc. 2018; 165: A1983 - A1990.
dc.identifier.citedreferenceJäckle M, Helmbrecht K, Smits M, Stottmeister D, Groà A. Self- diffusion barriers: possible descriptors for dendrite growth in batteries? Energ Environ Sci. 2018; 11: 3400 - 3407.
dc.identifier.citedreferenceBonnick P, Muldoon J. A trip to oz and a peak behind the curtain of magnesium batteries. Adv Functional Mater. 2020; 30: 1910510.
dc.identifier.citedreferenceChen T, Ceder G, Sai Gautam G, Canepa P. Evaluation of Mg compounds as coating materials in mg batteries. Front Chem. 2019; 7: 24.
dc.identifier.citedreferenceChu F, Hu J, Tian J, Zhou X, Li Z, Li C. In situ plating of porous mg network layer to reinforce anode dendrite suppression in Li- metal batteries. ACS Appl Mater Interfaces. 2018; 10: 12678 - 12689.
dc.identifier.citedreferenceYang Y, Wang W, Nuli Y, Yang J, Wang J. Highly active magnesium trifluoromethanesulfonate- based electrolytes for magnesium- sulfur batteries. ACS Appl Mater Interfaces. 2019; 11: 9062 - 9072.
dc.identifier.citedreferenceSalama M, Attias R, Hirsch B, et al. On the feasibility of practical Mg- S batteries: practical limitations associated with metallic magnesium anodes. ACS Appl Mater Interfaces. 2018; 10: 36910 - 36917.
dc.identifier.citedreferencePonrouch A, Bitenc J, Dominko R, Lindahl N, Johansson P, Palacin MR. Multivalent rechargeable batteries. Energy Storage Mater. 2019; 20: 253 - 262.
dc.identifier.citedreferenceKong L, Yan C, Huang JQ, et al. A review of advanced energy materials for magnesium- sulfur batteries. Energy Environ Mater. 2018; 1: 100 - 112.
dc.identifier.citedreferenceSalama M, Rosy Attias R, Yemini R, Gofer Y, Aurbach D, Noked M. Metal- sulfur batteries: overview and research methods. ACS Energy Lett. 2019; 4: 436 - 446.
dc.identifier.citedreferenceHong X, Mei J, Wen L, et al. Nonlithium metal- sulfur batteries: steps toward a leap. Adv Mater. 2019; 31: 1802822.
dc.identifier.citedreferenceZhao- Karger Z, Fichtner M. Beyond intercalation chemistry for rechargeable Mg batteries: a short review and perspective. Front Chem. 2018; 6: 656.
dc.identifier.citedreferenceElazari R, Salitra G, Garsuch A, Panchenko A, Aurbach D. Sulfur- impregnated activated carbon fiber cloth as a binder- free cathode for rechargeable Li- S batteries. Adv Mater. 2011; 23: 5641 - 5644.
dc.identifier.citedreferenceDu H, Zhang Z, He J, et al. A delicately designed sulfide graphdiyne compatible cathode for high- performance lithium/magnesium- sulfur batteries. Small. 2017; 13: 1702277.
dc.identifier.citedreferenceZhao- Karger Z, Gil Bardaji ME, Fuhr O, Fichtner M. A new class of non- corrosive, highly efficient electrolytes for rechargeable magnesium batteries. J Mater Chem A. 2017; 5: 10815 - 10820.
dc.identifier.citedreferenceMuthuraj D, Ghosh A, Kumar A, Mitra S. Nitrogen and sulfur doped carbon cloth as current collector and polysulfide immobilizer for magnesium- sulfur batteries. Chem Electro Chem. 2018; 6: 684 - 689.
dc.identifier.citedreferenceZhou X, Tian J, Hu J, Li C. High rate magnesium- sulfur battery with improved cyclability based on metal- organic framework derivative carbon host. Adv Mater. 2018; 30: 1704166.
dc.identifier.citedreferenceWei S, Xu S, Agrawral A, et al. A stable room- temperature sodium- sulfur battery. Nat Commun. 2016; 7: 11722.
dc.identifier.citedreferenceJi X, Lee KT, Nazar LF. A highly ordered nanostructured carbon- sulphur cathode for lithium- sulphur batteries. Nat Mater. 2009; 8: 500 - 506.
dc.identifier.citedreferenceZheng G, Yang Y, Cha JJ, Hong SS, Cui Y. Hollow carbon nanofiber encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011; 11: 4462 - 4467.
dc.identifier.citedreferenceGao T, Hou S, Wang F, et al. Reversible S0/MgSx redox chemistry in a MgTFSI2 /MgCl2/DME electrolyte for rechargeable Mg/S batteries. Angew Chem Int Ed. 2017; 56: 13526 - 13530.
dc.identifier.citedreferenceZhang BW, Sheng T, Liu YD, et al. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room- temperature sodium- sulfur batteries. NatCommun. 2018; 9: 4082.
dc.identifier.citedreferenceZhang BW, Sheng T, Wang Y, et al. Long- life room- temperature sodium- sulfur batteries by virtue of transition- metal nanocluster- sulfur interactions. Angew Chem Int Ed. 2019; 58: 1484 - 1488.
dc.identifier.citedreferenceJeong T- G, Choi DS, Song H, et al. Heterogeneous catalysis for lithium- sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations. ACS Energy Lett. 2017; 2: 327 - 333.
dc.identifier.citedreferenceLin H, Yang L, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur- deficient MoS 2 nanoflakes for lithium- sulfur batteries. Energ Environ Sci. 2017; 10: 1476 - 1486.
dc.identifier.citedreferenceLim WG, Kim S, Jo C, Lee J. A comprehensive review of materials with catalytic effects in Li- S batteries: enhanced redox kinetics. Angew Chem Int Ed. 2019; 58: 18746 - 18757.
dc.identifier.citedreferenceRazaq R, Zhang N, Xin Y, Li Q, Wang J, Zhang Z. Electrocatalytic conversion of lithium polysulfides by highly dispersed ultrafine Mo 2 C nanoparticles on hollow N- doped carbon flowers for Li- S batteries. EcoMat. 2020; 2: e12020.
dc.identifier.citedreferenceDoe RE, Han R, Hwang J, et al. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem Commun. 2014; 50: 243 - 245.
dc.identifier.citedreferenceMuldoon J, Bucur CB, Oliver AG, et al. Electrolyte roadblocks to a magnesium rechargeable battery. Energ Environ Sci. 2012; 5: 5941 - 5950.
dc.identifier.citedreferenceTutusaus O, Mohtadi R. Paving the way towards highly stable and practical electrolytes for rechargeable magnesium batteries. Chem Electro Chem. 2015; 2: 51 - 57.
dc.identifier.citedreferenceXu Y, Zhou G, Zhao S, et al. Improving a Mg/S battery with YCl 3 additive and magnesium polysulfide. Adv Sci. 2019; 6: 1800981.
dc.identifier.citedreferenceZhao X, Yang Y, NuLi Y, Li D, Wang Y, Xiang X. A new class of electrolytes based on magnesium bis(diisopropyl)amide for magnesium- sulfur batteries. Chem Commun. 2019; 55: 6086 - 6089.
dc.identifier.citedreferenceLiu T, Shao Y, Li G, et al. A facile approach using MgCl 2 to formulate high performance Mg 2+ electrolytes for rechargeable Mg batteries. J Mater Chem A. 2014; 2: 3430 - 3438.
dc.identifier.citedreferenceBian P, NuLi Y, Abudoureyimu Z, Yang J, Wang J. A novel thiolate- based electrolyte system for rechargeable magnesium batteries. Electrochim Acta. 2014; 121: 258 - 263.
dc.identifier.citedreferenceGao T, Noked M, Pearse AJ, et al. Enhancing the reversibility of Mg/S battery chemistry through Li + mediation. J Am Chem Soc. 2015; 137: 12388 - 12393.
dc.identifier.citedreferenceHa SY, Lee YW, Woo SW, et al. Magnesium(II) bis(trifluoromethane sulfonyl) imide based electrolytes with wide electrochemical windows for rechargeable magnesium batteries. ACS Appl Mater Interfaces. 2014; 6: 4063 - 4073.
dc.identifier.citedreferenceLi W, Cheng S, Wang J, et al. Synthesis, crystal structure, and electrochemical properties of a simple magnesium electrolyte for magnesium/sulfur batteries. Angew Chem Int Ed. 2016; 55: 6406 - 6410.
dc.identifier.citedreferenceZhang Z, Cui Z, Qiao L, et al. Novel design concepts of efficient mg- ion electrolytes toward high- performance magnesium- selenium and magnesium- sulfur batteries. Adv Energy Mater. 2017; 7: 1602055.
dc.identifier.citedreferenceZhang Y, Xie J, Han Y, Li C. Dual- salt mg- based batteries with conversion cathodes. Adv Funct Mater. 2015; 25: 7300 - 7308.
dc.identifier.citedreferenceTian J, Cao D, Zhou X, Hu J, Huang M, Li C. High- capacity Mg- organic batteries based on nanostructured rhodizonate salts activated by Mg- Li dual- salt electrolyte. ACS Nano. 2018; 12: 3424 - 3435.
dc.identifier.citedreferenceJaschin PW, Gao Y, Li Y, Bo S- H. A materials perspective on magnesium- ion- based solid- state electrolytes. J Mater Chem A. 2020; 8: 2875 - 2897.
dc.identifier.citedreferenceTao X, Liu Y, Liu W, et al. Solid- state lithium- sulfur batteries operated at 37°C with composites of nanostructured Li 7 La 3 Zr 2 O 12 /carbon foam and polymer. Nano Lett. 2017; 17: 2967 - 2972.
dc.identifier.citedreferenceYu X, Manthiram A. Sodium- sulfur batteries with a polymer- coated NASICON- type sodium- ion solid electrolyte. Matter. 2019; 1: 439 - 451.
dc.identifier.citedreferenceAnuar NK, Mohamed NS. Structural and electrical properties of novel Mg 0.9+0.5y Zn 0.4 Al y Zr 1.6- y (PO 4 ) 3 ceramic electrolytes synthesized via nitrate sol- gel method. J Sol- Gel Sci Technol. 2016; 80: 249 - 258.
dc.identifier.citedreferenceCanepa P, Bo S- H, Gautam GS, et al. High magnesium mobility in ternary spinel chalcogenides. Nat Commun. 2017; 8: 1359.
dc.identifier.citedreferenceMiner EM, Park SS, Dinca M, et al. High Li + and Mg 2+ conductivity in a Cu- azolate metal- organic framework. J Am Chem Soc. 2019; 141: 4422 - 4427.
dc.identifier.citedreferenceMuldoon J, Bucur CB, Gregory T, et al. Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem Rev. 2014; 114: 11683 - 11720.
dc.identifier.citedreferenceHe P, Ford HO, Merrill LC, Schaefer JL. Investigation of the effects of copper nanoparticles on magnesium- sulfur battery performance: how practical is metallic copper addition? ACS ApplEnergy Mater. 2019; 2: 6800 - 6807.
dc.identifier.citedreferenceHigashi S, Miwa K, Aoki M, Takechi K. A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem Commun. 2014; 50: 1320 - 1322.
dc.identifier.citedreferenceHu XC, Shi Y, Lang SY, et al. Direct insights into the electrochemical processes at anode/electrolyte interfaces in magnesium- sulfur batteries. Nano Energy. 2018; 49: 453 - 459.
dc.identifier.citedreferenceMohtadi R, Mizuno F. Magnesium batteries: current state of the art, issues and future perspectives. Beilstein J Nanotechnol. 2014; 5: 1291 - 1311.
dc.identifier.citedreferenceYoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D. Mg rechargeable batteries: an on- going challenge. Energ Environ Sci. 2013; 6: 2265 - 2279.
dc.identifier.citedreferenceAurbach D, Weissman I, Gofer Y, Levi E. Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem Rec. 2003; 3: 61 - 73.
dc.identifier.citedreferenceSievert B, Hacker J, Bienen F, Wagner N, Friedrich KA. Magnesium sulfur battery with a new magnesium powder anode. ECS Trans. 2017; 77: 413 - 424.
dc.identifier.citedreferenceLiu Z, Lee J, Xiang G, et al. Insights into the electrochemical performances of Bi anodes for Mg ion batteries using 25Mg solid state NMR spectroscopy. Chem Commun. 2017; 53: 743 - 746.
dc.identifier.citedreferenceDing C, Huang L, Guo Y, et al. An ultra- durable gel electrolyte stabilizing ion deposition and trapping polysulfides for lithium- sulfur batteries. Energy Storage Mater. 2020; 27: 25 - 34.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.