Show simple item record

Artificial intelligence and the world of work, a co‐constitutive relationship

dc.contributor.authorØsterlund, Carsten
dc.contributor.authorJarrahi, Mohammad Hossein
dc.contributor.authorWillis, Matthew
dc.contributor.authorBoyd, Karen
dc.contributor.authorWolf, Christine
dc.date.accessioned2021-01-05T18:46:33Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:46:33Z
dc.date.issued2021-01
dc.identifier.citationØsterlund, Carsten ; Jarrahi, Mohammad Hossein; Willis, Matthew; Boyd, Karen; Wolf, Christine (2021). "Artificial intelligence and the world of work, a co‐constitutive relationship." Journal of the Association for Information Science and Technology 72(1): 128-135.
dc.identifier.issn2330-1635
dc.identifier.issn2330-1643
dc.identifier.urihttps://hdl.handle.net/2027.42/163869
dc.description.abstractThe use of intelligent machines—digital technologies that feature data‐driven forms of customization, learning, and autonomous action—is rapidly growing and will continue to impact many industries and domains. This is consequential for communities of researchers, educators, and practitioners concerned with studying, supporting, and educating information professionals. In the face of new developments in artificial intelligence (AI), the research community faces 3 questions: (a) How is AI becoming part of the world of work? (b) How is the world of work becoming part of AI? and (c) How can the information community help address this topic of Work in the Age of Intelligent Machines (WAIM)? This opinion piece considers these 3 questions by drawing on discussion from an engaging 2019 iConference workshop organized by the NSF supported WAIM research coordination network (note: https://waim.network).
dc.publisherJohn Wiley & Sons, Inc.
dc.titleArtificial intelligence and the world of work, a co‐constitutive relationship
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInformation Science
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163869/1/asi24388_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163869/2/asi24388.pdf
dc.identifier.doi10.1002/asi.24388
dc.identifier.sourceJournal of the Association for Information Science and Technology
dc.identifier.citedreferencePee, L. G., Pan, S. L., & Cui, L. ( 2019 ). Artificial intelligence in healthcare robots: A social informatics study of knowledge embodiment. Journal of the Association for Information Science and Technology, 70 ( 4 ), 351 – 369.
dc.identifier.citedreferenceMeskó, B., Hetényi, G., & Győrffy, Z. ( 2018 ). Will artificial intelligence solve the human resource crisis in healthcare? BMC Health Services Research, 18 ( 1 ), 545.
dc.identifier.citedreferenceMetcalf, L., Askay, D. A., & Rosenberg, L. B. ( 2019 ). Keeping humans in the loop: Pooling knowledge through artificial swarm intelligence to improve business decision making. California Management Review, 61 ( 4 ), 84 – 109.
dc.identifier.citedreferenceMuro, M., Whiton, J., & Maxim, R. ( 2019 ). What jobs are affected by AI?: better‐paid, better‐educated workers face the most exposure. https://www.voced.edu.au/content/ngv:85736
dc.identifier.citedreferenceNeff, G., & Nagy, P. ( 2018 ). Agency in the digital age: Using symbiotic agency to explain human–technology interaction. In A networked self and human augmentics, artificial intelligence, sentience (pp. 113 – 123 ). London: Routledge.
dc.identifier.citedreferenceNhat, L. V., Wirtz, J., Kunz, W. H., Paluch, S., Gruber, T., Martins, A., & Patterson, P. G. ( 2020 ). Service robots, customers and service employees: What can we learn from the academic literature and where are the gaps? Journal of Service Theory and Practice, (Ahead of print). https://doi.org/10.1108/JSTP-04-2019-0088
dc.identifier.citedreferenceNichols, J. A., Herbert Chan, H. W., & Baker, M. A. B. ( 2019 ). Machine learning: Applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 11 ( 1 ), 111 – 118.
dc.identifier.citedreferenceØsterlund, C., Crowston, K., & Jackson, C. ( 2020 ). Building an apparatus: Refractive, reflective, and diffractive readings of trace data. Journal of the Association for Information Systems, 21 ( 1 ), 10.
dc.identifier.citedreferenceJohnson, D. G., & Verdicchio, M. ( 2017 ). AI anxiety. Journal of the Association for Information Science and Technology, 68 ( 9 ), 2267 – 2270.
dc.identifier.citedreferenceQuiroz, J. C., Laranjo, L., Kocaballi, A. B., Berkovsky, S., Rezazadegan, D., & Coiera, E. ( 2019 ). Challenges of developing a digital scribe to reduce clinical documentation burden. NPJ Digital Medicine, 2, 114.
dc.identifier.citedreferenceRai, A., Constantinides, P., & Sarker, S. ( 2019 ). Editor’s comments: Next‐generation digital platforms: toward human–AI hybrids. https://doi.org/10.5555/3370135.3370136
dc.identifier.citedreferenceRobert, L. P., Pierce, C., Marquis, L., Kim, S., & Alahmad, R. ( 2020 ). Designing fair AI for managing employees in organizations: A review, critique, and design agenda. Human–Computer Interaction, 1 – 31.
dc.identifier.citedreferenceSeeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G.‐J., Elkins, A., … Söllner, M. ( 2020 ). Machines as teammates: A research agenda on AI in team collaboration. Information & Management, 57 ( 2 ), 103174.
dc.identifier.citedreferenceSingh, R., Kalra, M. K., Nitiwarangkul, C., Patti, J. A., Homayounieh, F., Padole, A., … Digumarthy, S. R. ( 2018 ). Deep learning in chest radiography: Detection of findings and presence of change. PLoS One, 13 ( 10 ), e0204155.
dc.identifier.citedreferenceSmith, P. ( 2020 ). Human AI Partnership In Underwriting: A Task‐Centered Analysis of the Division of Work (Jarrahi M. H. [ed.]) [Undergraduate Honor]. University of North Carolina at Chapel Hill.
dc.identifier.citedreferenceSundar, S. S. ( 2020 ). Rise of machine agency: A framework for studying the psychology of human–AI interaction (HAII). Journal of Computer‐Mediated Communication: JCMC, 25 ( 1 ), 74 – 88.
dc.identifier.citedreferenceTopol, E. J. ( 2019 ). High‐performance medicine: The convergence of human and artificial intelligence. Nature Medicine, 25 ( 1 ), 44 – 56.
dc.identifier.citedreferenceWolf, C. T. ( 2019 ). Explainability scenarios: Towards scenario‐based XAI design. Proceedings of the 24th International Conference on Intelligent User Interfaces, pp. 252 – 257.
dc.identifier.citedreferenceWolf, C. T., & Blomberg, J. L. ( 2019 ). Evaluating the Promise of Human‐Algorithm Collaborations in Everyday Work Practices. PACMHCI, p. 3 (CSCW), Article No. 143.
dc.identifier.citedreferenceZuboff, S. ( 1988 ). In the age of the smart machine: The future of work and power (Vol. 186 ). New York, NY: Basic Books.
dc.identifier.citedreferenceAtkinson, R. D. ( 2019 ). Robotics and the future of production and work. Information Technology and Innovation Foundation. Retrieved from https://itif.org/publications/2019/10/15/robotics-and-future-production-and-work
dc.identifier.citedreferenceBecker, A. ( 2019 ). Artificial intelligence in medicine: What is it doing for us today? Health Policy and Technology, 8 ( 2 ), 198 – 205.
dc.identifier.citedreferenceBrynjolfsson, E., & Mitchell, T. ( 2017 ). What can machine learning do? Workforce implications. Science, 358 ( 6370 ), 1530 – 1534.
dc.identifier.citedreferenceChallen, R., Denny, J., Pitt, M., Gompels, L., Edwards, T., & Tsaneva‐Atanasova, K. ( 2019 ). Artificial intelligence, bias and clinical safety. BMJ Quality & Safety, 28 ( 3 ), 231 – 237.
dc.identifier.citedreferenceChui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. ( 2018 ). Notes from the AI frontier: Insights from hundreds of use cases. McKinsey Global Institute. Retrieved from http://straty.com/wp-content/uploads/2018/04/McKinsey-AI-Frontier-paper-April-2018.pdf
dc.identifier.citedreferenceCzarniawska, B., & Joerges, B. ( 2020 ). Robotization of work?: Answers from popular culture, media and social sciences, Cheltenham, United Kingdom: Edward Elgar Publishing.
dc.identifier.citedreferenceDavenport, T., Guha, A., Grewal, D., & Bressgott, T. ( 2020 ). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48 ( 1 ), 24 – 42.
dc.identifier.citedreferenceDavenport, T., & Kalakota, R. ( 2019 ). The potential for artificial intelligence in healthcare. Future Healthcare Journal, 6 ( 2 ), 94 – 98. https://doi.org/10.7861/futurehosp.6-2-94
dc.identifier.citedreferenceDavenport, T. H., & Kirby, J. ( 2016 ). Only humans need apply: Winners and losers in the age of smart machines. New York, NY: Harper Business.
dc.identifier.citedreferenceDuan, Y., Edwards, J. S., & Dwivedi, Y. K. ( 2019 ). Artificial intelligence for decision making in the era of big data – Evolution, challenges and research agenda. International Journal of Information Management, 48, 63 – 71. https://doi.org/10.1016/j.ijinfomgt.2019.01.021
dc.identifier.citedreferenceFrey, C. B., & Osborne, M. A. ( 2017 ). The future of employment: How susceptible are jobs to computerisation? Technological Forecasting and Social Change, 114, 254 – 280.
dc.identifier.citedreferenceGal, U., Jensen, T. B., & Stein, M.‐K. ( 2020 ). Breaking the vicious cycle of algorithmic management: A virtue ethics approach to people analytics. Information and Organization, 30 ( 2 ), 100301.
dc.identifier.citedreferenceGlikson, E., & Woolley, A. W. ( 2020 ). Human Trust in Artificial Intelligence: Review of empirical research. Annals. https://doi.org/10.5465/annals.2018.0057
dc.identifier.citedreferenceGray, M. L., & Suri, S. ( 2019 ). Ghost work: How to stop Silicon Valley from building a new global underclass, Boston, MA: Houghton Mifflin Harcourt.
dc.identifier.citedreferenceGriffey, J. ( 2019 ). Artificial intelligence and machine learning in libraries, Chicago, IL: American Library Association.
dc.identifier.citedreferenceGuzman, A. L., & Lewis, S. C. ( 2020 ). Artificial intelligence and communication: A human–machine communication research agenda. New Media & Society, 22 ( 1 ), 70 – 86.
dc.identifier.citedreferenceHaenlein, M., & Kaplan, A. ( 2019 ). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61 ( 4 ), 5 – 14.
dc.identifier.citedreferenceHaraway, D. J. ( 1991 ). Simians, cyborgs and women: The reinvention of nature, London: Routledge.
dc.identifier.citedreferenceHoffmann, A. L., Roberts, S. T., Wolf, C. T., & Wood, S. ( 2018 ). Beyond fairness, accountability, and transparency in the ethics of algorithms: Contributions and perspectives from LIS. Proceedings of the Association for Information Science and Technology, 55 ( 1 ), 694 – 696.
dc.identifier.citedreferenceJarrahi, M. H. ( 2019 ). In the age of the smart artificial intelligence: AI’s dual capacities for automating and informating work. Business Information Review, 36 ( 4 ), 178 – 187. https://doi.org/10.1177/0266382119883999
dc.identifier.citedreferenceKellogg, K. C., Valentine, M. A., & Christin, A. ( 2020 ). Algorithms at work: The new contested terrain of control. Annals, 14 ( 1 ), 366 – 410.
dc.identifier.citedreferenceKietzmann, J., & Pitt, L. F. ( 2020 ). Artificial intelligence and machine learning: What managers need to know. Business Horizons, 63 ( 2 ), 131 – 133.
dc.identifier.citedreferenceLee, M. K. ( 2018 ). Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management. Big Data & Society, 5 ( 1 ), 205395171875668. https://doi.org/10.1177/2053951718756684
dc.identifier.citedreferenceMaddox, T. M., Rumsfeld, J. S., & Payne, P. R. O. ( 2019 ). Questions for artificial intelligence in health care. JAMA: The Journal of the American Medical Association, 321 ( 1 ), 31 – 32.
dc.identifier.citedreferenceMaedche, A., Legner, C., Benlian, A., Berger, B., Gimpel, H., Hess, T., … Sollner, M. ( 2019 ). AI‐based digital assistants: Opportunities, threats, and research perspectives. Business and Information Systems Engineering, 61 ( 4 ), 535 – 544.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.