Show simple item record

t‐ZrO2 toughened Al2O3 free‐standing films and as oxidation mitigating thin films on silicon nitride via colloidal processing of flame made nanopowders (NPs)

dc.contributor.authorZhang, Xinyu
dc.contributor.authorCheng, Xiaopo
dc.contributor.authorJansohn, Monika
dc.contributor.authorNiedermaier, Matthias
dc.contributor.authorLenk, Thomas
dc.contributor.authorBritting, Stefan
dc.contributor.authorSchmidt, Karsten
dc.contributor.authorLaine, Richard M.
dc.date.accessioned2021-01-05T18:46:39Z
dc.date.availableWITHHELD_15_MONTHS
dc.date.available2021-01-05T18:46:39Z
dc.date.issued2021-03
dc.identifier.citationZhang, Xinyu; Cheng, Xiaopo; Jansohn, Monika; Niedermaier, Matthias; Lenk, Thomas; Britting, Stefan; Schmidt, Karsten; Laine, Richard M. (2021). "t‐ZrO2 toughened Al2O3 free‐standing films and as oxidation mitigating thin films on silicon nitride via colloidal processing of flame made nanopowders (NPs)." Journal of the American Ceramic Society 104(3): 1281-1296.
dc.identifier.issn0002-7820
dc.identifier.issn1551-2916
dc.identifier.urihttps://hdl.handle.net/2027.42/163872
dc.description.abstractZirconia toughened aluminas (ZTAs) are one of the most important engineering ceramics with high melting points, excellent mechanical strength, and chemical stability, and are commonly used as wear resistant and high‐temperature components, as prosthetic implants, and electric circuit substrates. In this work, we explore methods of processing fine‐grained, dense, thin, free‐standing (ZrO2)x(Al2O3)1−x films (x = 0‐50 mol%, ~40 μm thick) by sintering flame made nanopowders (NPs) to optimize the t‐ZrO2 content, sinterability, and microstructures under select conditions (1120°C‐1500°C/5 h in O2 or 95%N2/5%H2). In all cases, the final sintered products retain t‐ZrO2 with average grain sizes (AGSs) of 0.1‐1 μm. ZTA film thicknesses were increased to ~200 μm to assess potential as electronic substrates. Excellent fracture toughness (24 MPa m1/2) and small AGSs of 0.7 μm were found for ~200 μm thick ZTA films sintered at 1500°C/5 h/N2/H2 using a three‐step binder burnout process. Furthermore, we show that homogeneous ZTA thin films (<5 μm thick) can be sintered on Si3N4 substrates (thickness ≈ 300 μm) to provide physical protection against oxidation under extreme conditions (1500°C/1 h/O2), offering additional practical utility for high‐temperature ceramics and power electronic substrates.
dc.publisherSpringer‐Verlag
dc.publisherWiley Periodicals, Inc.
dc.subject.otherZTA
dc.subject.othernanopowders
dc.subject.othersinter/sintering
dc.subject.othernitrides
dc.subject.othernanoparticles
dc.subject.otheralumina
dc.subject.otherLF‐FSP
dc.subject.otherpower electronic substrates
dc.subject.otherSi3N4
dc.subject.othertetragonal zirconia
dc.subject.otherzirconia
dc.titlet‐ZrO2 toughened Al2O3 free‐standing films and as oxidation mitigating thin films on silicon nitride via colloidal processing of flame made nanopowders (NPs)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163872/1/jace17570.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163872/2/jace17570_am.pdf
dc.identifier.doi10.1111/jace.17570
dc.identifier.sourceJournal of the American Ceramic Society
dc.identifier.citedreferenceBerry KA, Harmer MP. Effect of MgO solute on microstructure development in Al 2 O 3. J Am Ceram Soc. 1986; 69 ( 2 ): 143 – 9.
dc.identifier.citedreferenceKim M. Mixed‐metal oxide nanopowders by liquid‐feed flame spray pyrolysis (LF‐FSP): synthesis and processing of core‐shell nanoparticles [Thesis]. Ann Arbor (MI): University of Michigan; 2008.
dc.identifier.citedreferenceZhao Z, Zhang L, Song Y, Wang W, Wu J. Microstructures and properties of rapidly solidified Y 2 O 3 doped Al 2 O 3 /ZrO 2 composites prepared by combustion synthesis. Scr Mater. 2006; 55 ( 9 ): 819 – 22.
dc.identifier.citedreferencePena JI, Merino RI, Harlan NR, Larrea A, De la Fuente GF, Orera VM. Microstructure of Y 2 O 3 doped Al 2 O 3 ‐ZrO 2 eutectics grown by the laser floating zone method. J Eur Ceram Soc. 2002; 22 ( 14–15 ): 2595 – 602.
dc.identifier.citedreferenceLee JH, Yoshikawa A, Kaiden H, Lebbou K, Fukuda T, Yoon DH, et al. Microstructure of Y 2 O 3 doped Al 2 O 3 /ZrO 2 eutectic fibers grown by the micro‐pulling‐down method. J Cryst Growth. 2001; 231 ( 1–2 ): 179 – 85.
dc.identifier.citedreferenceYoshida H, Kuwabara A, Yamamoto T, Ikuhara Y, Sakuma T. High temperature plastic flow and grain boundary chemistry in oxide ceramics. J Mater Sci. 2005; 40 ( 12 ): 3129 – 35.
dc.identifier.citedreferenceYi E, Wang W, Mohanty S, Kieffer J, Tamaki R, Laine RM. Materials that can replace liquid electrolytes in Li batteries: Superionic conductivities in Li 1.7 Al 0.3 Ti 1.7 Si 0.4 P 2.6 O 12. Processing combustion synthesized nanopowders to free standing thin films. J Power Sources. 2014; 269 ( 10 ): 577 – 88.
dc.identifier.citedreferenceYi E, Wang W, Kieffer J, Laine RM. Flame made nanoparticles permit processing of dense, flexible, Li + conducting ceramic electrolyte thin films of cubic‐Li 7 La 3 Zr 2 O 12 (c‐LLZO). J Mater Chem A. 2016; 4 ( 33 ): 12947 – 54.
dc.identifier.citedreferenceYi E, Temeche E, Laine RM. Superionically conducting β′′‐Al 2 O 3 thin films processed using flame synthesized nanopowders. J Mater Chem A. 2018; 6: 12411 – 9.
dc.identifier.citedreferenceWang CJ, Huang CY. Effect of TiO 2 addition on the sintering behavior, hardness and fracture toughness of an ultrafine alumina. Mater Sci Eng A. 2008; 492 ( 1–2 ): 306 – 10.
dc.identifier.citedreferenceBagley RD, Cutler IB, Johnson DL. Effect of TiO 2 on initial sintering of Al 2 O 3. J Am Ceram Soc. 1970; 53 ( 3 ): 136 – 41.
dc.identifier.citedreferenceBrook RJ. Effect of TiO 2 on initial sintering of Al 2 O 3. J Am Ceram Soc. 1972; 55 ( 2 ): 114.
dc.identifier.citedreferenceRoy SK, Coble RL. Solubilities of magnesia, titania, and magnesium titanate in aluminum oxide. J Am Ceram Soc. 1968; 51 ( 1 ): 1 – 6.
dc.identifier.citedreferenceKosmac T, Wallace JS, Claussen N. Influence of MgO additions on the microstructure and mechanical properties of Al 2 O 3 ‐ZrO 2 composites. J Am Ceram Soc. 1982; 65 ( 5 ): c66 – 67.
dc.identifier.citedreferenceCoble RL. Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J Appl Phys. 1961; 32 ( 5 ): 793 – 9.
dc.identifier.citedreferenceBennison SJ, Harmer MP. Grain‐growth kinetics for alumina in the absence of a liquid phase. J Am Ceram Soc. 1985; 68 ( 1 ): C‐22 – C‐24.
dc.identifier.citedreferenceShaw NJ, Brook RJ. Structure and grain coarsening during the sintering of alumina. J Am Ceram Soc. 1986; 69 ( 2 ): 107 – 10.
dc.identifier.citedreferenceGreskovich C, Brewer JA. Solubility of magnesia in polycrystalline alumina at high temperatures. J Am Ceram Soc. 2001; 84 ( 2 ): 420 – 5.
dc.identifier.citedreferenceBennison SJ, Harmer MP. Effect of magnesia solute on surface diffusion in sapphire and the role of magnesia in the sintering of alumina. J Am Ceram Soc. 1990; 73 ( 4 ): 833 – 7.
dc.identifier.citedreferenceRhamdhani MA, Soepriyanto S, Ramelan A, Barliansyah A. Determination of mechanism and grain growth kinetics of MgO doped Al 2 O 3. J Trop Med. 2005; 12 ( 3 ): 148 – 58.
dc.identifier.citedreferenceLin FJT, De Jonghe LC. Initial coarsening and microstructural evolution of fast‐fired and MgO‐doped Al 2 O 3. J Am Ceram Soc. 1997; 80 ( 11 ): 2891 – 6.
dc.identifier.citedreferenceKottada RS, Chokshi AH. The high temperature tensile and compressive deformation characteristics of magnesia doped alumina. Acta Mater. 2000; 48 ( 15 ): 3905 – 15.
dc.identifier.citedreferenceYoshizawa Y, Sakuma T. Improvement of tensile ductility in high‐purity alumina due to magnesia addition. Scanning. 1992; 40 ( 11 ): 2943 – 50.
dc.identifier.citedreferenceBackhaus‐Ricoult M, Guerin V, Huntz A‐M, Urbanovich VS. High‐temperature oxidation behavior of high‐purity α‐, β‐, and mixed silicon nitride ceramics. J Am Ceram Soc. 2002; 85 ( 2 ): 385 – 92.
dc.identifier.citedreferenceRaider SI, Flitsch R, Aboaf JA, Pliskin WA. Surface oxidation of silicon nitride films. J Electrochem Soc. 1976; 123 ( 4 ): 560 – 5.
dc.identifier.citedreferenceNarushima T, Goto T, Hirai T, Iguchi Y. High‐temperature oxidation of silicon carbide and silicon nitride. Mater Trans JIM. 1997; 38 ( 10 ): 821 – 35.
dc.identifier.citedreferenceAndrews P, Riley FL. The microstructure and composition of oxide films formed during high temperature oxidation of a sintered silicon nitride. J Eur Ceram Soc. 1989; 5 ( 4 ): 245 – 56.
dc.identifier.citedreferenceZhou Y, Hyuga H, Kusano D, Yoshizawa Y, Hirao K. A tough silicon nitride ceramic with high thermal conductivity. Adv Mater. 2011; 23 ( 39 ): 4563 – 7.
dc.identifier.citedreferenceFukuda S, Shimada K, Izu N, Miyazaki H, Iwakiri S, Hirao K. Crack generation in electroless nickel plating layers on copper‐metallized silicon nitride substrates during thermal cycling. J Mater Sci Mater Electron. 2017; 28 ( 11 ): 8278 – 85.
dc.identifier.citedreferenceHirao K, Fukuda S, Miyazaki H, Zhou Y, Hyuga H, Iwakiri S. Evaluation of residual thermal stress in Cu metalized silicon nitride substrates by Raman spectroscopy. In: 2018 International Conference on Electronics Packaging and iMAPS All Asia Conference (ICEP‐IAAC) [Internet]. 2018. p. 194 – 6. https://doi.org/10.23919/ICEP.2018.8374701
dc.identifier.citedreferenceKim S, Gislason JJ, Morton RW, Pan XQ, Sun HP, Laine RM. Liquid‐feed flame spray pyrolysis of nanopowders in the alumina‐titania system. Chem Mater. 2004; 16 ( 12 ): 2336 – 43.
dc.identifier.citedreferenceKim M, Laine RM. One‐step synthesis of core‐shell (Ce 0.7 Zr 0.3 O 2 ) x (Al 2 O 3 ) 1–x [(Ce 0.7 Zr 0.3 O 2 )@Al 2 O 3 ] nanopowders via liquid‐feed flame spray pyrolysis (LF‐FSP). J Am Chem Soc. 2009; 131 ( 26 ): 9220 – 9.
dc.identifier.citedreferenceKim M, Hinklin TR, Laine RM. Core‐shell nanostructured nanopowders along (CeO x ) x (Al 2 O 3 ) 1–x tie‐line by liquid‐feed flame spray pyrolysis (LF‐FSP). Chem Mater. 2008; 20 ( 16 ): 5154 – 62.
dc.identifier.citedreferenceLaine RM, Marchal J, Sun H, Pan XQ. A new Y 3 Al 5 O 12 phase produced by liquid‐feed flame spray pyrolysis (LF‐FSP). Adv Mater. 2005; 17 ( 7 ): 830 – 3.
dc.identifier.citedreferenceWei GC, Rhodes WH. Sintering of translucent alumina in a nitrogen–hydrogen gas atmosphere. J Am Ceram Soc. 2000; 83 ( 7 ): 1641 – 8.
dc.identifier.citedreferenceDorre E, Hubner H. Alumina: processing, properties and applications. Berlin Heidelberg: Springer‐Verlag; 1984.
dc.identifier.citedreferenceRao PK, Jana P, Ahmad MI, Roy PK. Synthesis and characterization of zirconia toughened alumina ceramics prepared by co‐precipitation method. Ceram Int. 2019; 45 ( 13 ): 16054 – 61.
dc.identifier.citedreferenceIsfahani T, Javadpour J, Khavandi A. Formation mechanism and phase transformations in mechanochemically prepared Al 2 O 3 ‐40wt% ZrO 2 nanocomposite powder. Compos Interfaces. 2019; 26 ( 10 ): 887 – 904.
dc.identifier.citedreferenceSarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N. Synthesis and characterization of sol‐gel derived ZrO 2 doped Al 2 O 3 nanopowder. Ceram Int. 2007; 33 ( 7 ): 1275 – 82.
dc.identifier.citedreferenceSarkar D, Adak S, Mitra NK. Preparation and characterization of an Al 2 O 3 ‐ZrO 2 nanocomposite, part I: powder synthesis and transformation behavior during fracture. Compos Part Appl Sci Manuf. 2007; 38 ( 1 ): 124 – 31.
dc.identifier.citedreferenceGanesh I, Olhero SM, Torres PMC, Alves FJ, Ferreira JMF. Hydrolysis‐induced aqueous gelcasting for near‐net shape forming of ZTA ceramic composites. J Eur Ceram Soc. 2009; 29 ( 8 ): 1393 – 401.
dc.identifier.citedreferenceZu Y, Chen G, Fu X, Luo K, Wang C, Song S, et al. Effects of liquid phases on densification of TiO 2 ‐doped Al 2 O 3 ‐ZrO 2 composite ceramics. Ceram Int. 2014; 40 ( 3 ): 3989 – 93.
dc.identifier.citedreferenceChen G, Zu Y, Luo J, Fu X, Zhou W. Microstructure and superplastic behavior of TiO 2 ‐doped Al 2 O 3 ‐ZrO 2 (3Y) composite ceramics. Mater Sci Eng A. 2012; 554: 6 – 11.
dc.identifier.citedreferenceYu W, Zheng Y, Yu Y, Su X. Microstructural evolution of supra‐nanostructure Al 2 O 3 /ZrO 2 eutectic powders by combustion synthesis‐spray cooling. J Am Ceram Soc. 2019; 102 ( 12 ): 7689 – 98.
dc.identifier.citedreferenceTakeuchi M, Niedermaier M, Jansohn M, Umehara N, Laine RM. Processing thin (<10μm), dense, flexible α‐Al 2 O 3 films from nanopowders. J Ceram Soc Jpn. 2019; 127 ( 2 ): 81 – 9.
dc.identifier.citedreferenceGundel P, Persons R, Bawohl M, Challingsworth M, Czwickla C, Garcia V, et al. Highly reliable and cost effective thick film substrates for power LEDs. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC) [Internet]. Long Beach, CA: IEEE; 2016. p. 3069 – 74. https://doi.org/10.1109/APEC.2016.7468301
dc.identifier.citedreferenceMaeder T, Jacq C, Ryser P. Long‐term mechanical reliability of ceramic thick‐film circuits and mechanical sensors under static load. Sens Actuators Phys. 2012; 186: 210 – 8.
dc.identifier.citedreferenceSrikanth C, Madhu GM. Effect of ZTA concentration on structural, thermal, mechanical and dielectric behavior of novel ZTA–PVA nanocomposite films. SN Appl Sci. 2020; 2 ( 3 ): 422.
dc.identifier.citedreferenceMussavi Rizi SH, Ghatee M. A study of mechanical properties of alumina–zirconia composite films prepared by a combination of tape casting and solution impregnation method. J Aust Ceram Soc. 2020; 56 ( 1 ): 167 – 74.
dc.identifier.citedreferenceMiric A, Dietrich P. Inorganic substrates for power electronics applications. Heraeus Dtschl. 2013; 1 – 7.
dc.identifier.citedreferenceChen I‐W, Xue LA. Development of superplastic structural ceramics. J Am Ceram Soc. 1990; 73 ( 9 ): 2585 – 609.
dc.identifier.citedreferenceWang X, Padture NP, Tanaka H. Contact‐damage‐resistant ceramic/single‐wall carbon nanotubes and ceramic/graphite composites. Nat Mater. 2004; 3 ( 8 ): 539 – 44.
dc.identifier.citedreferenceChen P, Chen J, Guo B, Liu H. Measurement of the dynamic fracture toughness of alumina ceramic. In: Song B, Lamberson L, Casem D, Kimberley J, editors. Dynamic behavior of materials, volume 1 [Internet] (Conference Proceedings of the Society for Experimental Mechanics Series). Cham: Springer International Publishing; 2016: 33 – 8.
dc.identifier.citedreferenceCasellas D, Nagl MM, Llanes L, Anglada M. Fracture toughness of alumina and ZTA ceramics: microstructural coarsening effects. J Mater Process Technol. 2003; 144: 148 – 52.
dc.identifier.citedreferenceGreen DJ. Critical microstructures for microcracking in Al 2 O 3 ‐ZrO 2 composites. J Am Ceram Soc. 1982; 65 ( 12 ): 610 – 4.
dc.identifier.citedreferenceTuan WH, Chen RZ, Wang TC, Cheng CH, Kuo PS. Mechanical properties of Al 2 O 3 /ZrO 2 composites. J Eur Ceram Soc. 2002; 22 ( 16 ): 2827 – 33.
dc.identifier.citedreferenceDresvyannikov AF, Petrova EV, Khairullina AI. Electrochemical synthesis and physicochemical properties of nanostructured Al 2 O 3 –ZrO 2 –MgO oxide systems. Prot Met Phys Chem Surf. 2020; 56 ( 1 ): 89 – 93.
dc.identifier.citedreferenceAbi CB, Emrullahoǧlu OF, Said G. Microstructure and mechanical properties of MgO‐stabilized ZrO 2 ‐Al 2 O 3 dental composites. J Mech Behav Biomed Mater. 2013; 18: 123 – 31.
dc.identifier.citedreferenceGao L, Liu Q, Hong JS, Miyamoto H, De La Torre SD, Kakitsuji A, et al. Phase transformation in the Al 2 O 3 ‐ZrO 2 system. J Mater Sci. 1998; 33 ( 6 ): 1399 – 403.
dc.identifier.citedreferenceWakai F, Iga T, Nagano T. Effect of dispersion of ZrO 2 particles on creep of fine‐grained Al 2 O 3. J Ceram Soc Jpn. 1988; 12: 1206 – 9.
dc.identifier.citedreferenceYoshida H, Okada K, Ikuhara Y, Sakuma T. Improvement of high‐temperature creep resistance in fine‐grained Al 2 O 3 by Zr 4+ segregation in grain boundaries. Philos Mag Lett. 1997; 76 ( 1 ): 9 – 14.
dc.identifier.citedreferenceKim M, Laine RM. Liquid‐feed flame spray pyrolysis (LF‐FSP) for combinatorial processing of nanooxide powders along the (ZrO 2 ) 1–x (Al 2 O 3 ) x tie‐line. Phase segregation and the formation of core‐shell nanoparticles. J Ceram Process Res. 2007; 8 ( 2 ): 129 – 36.
dc.identifier.citedreferenceKim M, Laine RM. Pressureless sintering t‐zirconia@δ‐Al 2 O 3 (54 mol%) core‐shell nanopowders at 1120°C provides dense t‐zirconia‐toughened α‐Al 2 O 3 nanocomposites. J Am Ceram Soc. 2010; 93 ( 3 ): 709 – 15.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.