Show simple item record

Fully distributed AC power flow (ACPF) algorithm for distribution systems

dc.contributor.authorPourbabak, Hajir
dc.contributor.authorAjao, Adetokunbo
dc.contributor.authorChen, Tao
dc.contributor.authorSu, Wencong
dc.date.accessioned2021-01-05T18:46:57Z
dc.date.available2021-01-05T18:46:57Z
dc.date.issued2019-06
dc.identifier.citationPourbabak, Hajir; Ajao, Adetokunbo; Chen, Tao; Su, Wencong (2019). "Fully distributed AC power flow (ACPF) algorithm for distribution systems." IET Smart Grid 2(2): 155-162.
dc.identifier.issn2515-2947
dc.identifier.issn2515-2947
dc.identifier.urihttps://hdl.handle.net/2027.42/163883
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Institution of Engineering and Technology
dc.subject.otherB8110B Power system management, operation and economics
dc.subject.othercentral controller
dc.subject.othershares
dc.subject.othertotal computation load
dc.subject.othereffective method
dc.subject.otherload flow
dc.subject.otherpower system security
dc.subject.otherpower system management
dc.subject.otherAC power flow algorithm
dc.subject.otherdistribution systems
dc.subject.othersystem operation
dc.subject.othercontrol
dc.subject.othercomplex nodal voltages
dc.subject.otherpower flow complexity
dc.subject.otherdistributed method
dc.subject.otherlinearised AC power system
dc.subject.othernonlinear AC power flow
dc.subject.otherlinear ACPF equations
dc.subject.othercase study
dc.subject.otherlinearised ACPF
dc.subject.otherdistributed ACPF
dc.subject.otherlarger power system
dc.subject.otherdistributed/decentralised algorithm
dc.subject.otherC3340H Control of electric power systems
dc.titleFully distributed AC power flow (ACPF) algorithm for distribution systems
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163883/1/stg2bf00044.pdf
dc.identifier.doi10.1049/iet-stg.2018.0060
dc.identifier.sourceIET Smart Grid
dc.identifier.citedreferenceMatos M.A.: ‘A new power flow method for radial networks’. In 2003 IEEE Bologna Power Tech Conf. Proc., Bologna, Italy, 2003, vol. 2, pp. 359 – 363. Available from: http://ieeexplore.ieee.org/document/1304335/
dc.identifier.citedreferenceGlover J.D. Overbye T.J. Sarma M.S.: ‘ Power system analysis & design ’ ( Boston, MA, 2017, 6th edn.)
dc.identifier.citedreferenceWood A.J. Wollenberg B.F. Sheble G.B.: ‘ Power generation, operation, and control ’ ( John Wiley & Sons, Inc., Hoboken, 2014 ). Available from: https://www.worldcat.org/title/power‐generation‐operation‐and‐control/oclc/886509477 {&}referer=brief{_}results
dc.identifier.citedreferenceStott B. Jardim J. Alsac O.: ‘ DC power flow revisited ’, IEEE Trans. Power Syst., 2009, 24, ( 3 ), pp. 1290 – 1300
dc.identifier.citedreferenceHatziargyriou N. Asano H. Iravani R. et al.: ‘ Microgrids: an overview of ongoing research, development, and demonstration projects ’, IEEE Power Energy Mag., 2007, 5, ( July 2007 ), pp. 78 – 94. Available from: https://building‐microgrid.lbl.gov/sites/all/files/journal‐lbnl‐62937
dc.identifier.citedreferenceHamidi R.J. Livani H. Hosseinian S.H. et al.: ‘ Distributed cooperative control system for smart microgrids ’, Electr. Power Syst. Res., 2016, 130, pp. 241 – 250. Available from: http://dx.doi.org/10.1016/j.epsr.2015.09.012
dc.identifier.citedreferenceKazemi A. Pourbabak H.: ‘ Islanding detection method based on a new approach to voltage phase angle of constant power inverters ’, IET Gener. Transm. Distrib., 2016, 10, ( 5 ), pp. 1190 – 1198. Available from: http://digital‐library.theiet.org/content/journals/10.1049/iet‐gtd.2015.0776
dc.identifier.citedreferenceZou G. Gao H. Tong B. et al.: ‘ Directional pilot protection method for distribution grid with DG ’. 12th IET Int. Conf. on Developments in Power System Protection (DPSP 2014), Copenhagen, Denmark, 2014, (1), pp. 1 – 5. Available from: http://digital‐library.theiet.org/content/conferences/10.1049/cp.2014.0089
dc.identifier.citedreferenceSu W. Wang J. Ton D.: ‘ Smart grid impact on operation and planning of electric energy systems ’, in ‘ Handbook of clean energy systems ’ ( John Wiley & Sons, Ltd, Chichester, UK, 2015 ), pp. 1 – 13. Available from: http://doi.wiley.com/10.1002/9781118991978.hces030
dc.identifier.citedreferencePourbabak H. Chen T. Su W.: ‘Consensus‐based distributed control for economic operation of distribution grid with multiple consumers and prosumers’. In 2016 IEEE Power and Energy Society General Meeting (PESGM), Boston, MA, 2016, vol. 2016‐Novem., pp. 1 – 5. Available from: http://ieeexplore.ieee.org/document/7741083/
dc.identifier.citedreferenceBoyer S.A.: ‘ Scada: supervisory control and data acquisition ’ ( International Society of Automation, USA, 2009, 4th edn. ). Available from: https://www.isa.org/store/scada‐supervisory‐control‐and‐data‐acquisition, ‐fourth‐edition/44478161
dc.identifier.citedreferenceHiggs M.A.: ‘Electrical SCADA systems from the operator’s perspective’. In IEE Seminar Condition Monitoring for Rail Transport Systems, London, UK, 1998, pp. 3/1 – 3/4. Available from: http://digital‐library.theiet.org/content/conferences/10.1049/ic{_}19980976
dc.identifier.citedreferencePourbabak H. Luo J. Chen T. et al.: ‘ A novel consensus‐based distributed algorithm for economic dispatch based on local estimation of power mismatch ’, IEEE Trans. Smart Grid, 2018, 9, ( 6 ), pp. 5930 – 5942. Available from: https://ieeexplore.ieee.org/document/7913707
dc.identifier.citedreferencePourbabak H. Chen T. Zhang B. et al.: ‘ Control and energy management system in microgrids ’, in ‘ Clean energy microgrids ’ ( Institution of Engineering and Technology, Stevenage, UK, 2017 ), pp. 109 – 133. Available from: http://digital‐library.theiet.org/content/books/10.1049/pbpo090e{_}ch3
dc.identifier.citedreferenceXu S. Pourbabak H. Su W.: ‘ Distributed cooperative control for economic operation of multiple plug‐in electric vehicle parking decks ’, Int. Trans. Electr. Energy Syst., 2017, p. 27, e2348. Available from: http://doi.wiley.com/10.1002/etep.2348
dc.identifier.citedreferenceMcArthur S.D.J. Davidson E.M. Catterson V.M. et al.: ‘ Multi‐agent systems for power engineering applications – part I: concepts, approaches, and technical challenges ’, IEEE Trans. Power Syst., 2007, 22, ( 4 ), pp. 1743 – 1752. Available from: http://ieeexplore.ieee.org/document/4349106/
dc.identifier.citedreferenceKleinberg M. Miu K. Nwankpa C.: ‘ Distributed multi‐phase distribution power flow: modeling, solution algorithm and simulation results ’. Simulation‐Transactions of the Society for Modeling and Simulation Int., 2008, 84, ( 8–9 ), pp. 403 – 412. Available from: http://journals.sagepub.com/doi/pdf/10.1177/0037549708098121
dc.identifier.citedreferenceNguyen C.P. Flueck A.J.: ‘ A novel agent‐based distributed power flow solver for smart grids ’, IEEE Trans. Smart Grid, 2015, 6, ( 3 ), pp. 1261 – 1270. Available from: http://ieeexplore.ieee.org/ielx7/5165411/7086423/06987287.pdf?tp={&}arnumber=6987287{&}isnumber=7086423
dc.identifier.citedreferenceWarnier M. Dulman S. Koç Y. et al.: ‘ Distributed monitoring for the prevention of cascading failures in operational power grids ’, Int. J. Crit. Infrastruct. Prot., 2017, 17, pp. 15 – 27. Available from: http://www.sciencedirect.com/science/article/pii/S1874548216300427
dc.identifier.citedreferenceIggland E. Andersson G.: ‘On using reduced networks for distributed DC power flow’. In 2012 IEEE Power and Energy Society General Meeting, San Diego, USA, 2012, pp. 1 – 6. Available from: http://ieeexplore.ieee.org/document/6345302/
dc.identifier.citedreferenceDagdougui H. Sacile R.: ‘ Decentralized control of the power flows in a network of smart microgrids modeled as a team of cooperative agents ’, IEEE Trans. Control Syst. Technol., 2014, 22, ( 2 ), pp. 510 – 519
dc.identifier.citedreferenceNakayama K. Zhao C. Bic L.F. et al.: ‘ Distributed power flow loss minimization control for future grid ’, Int. J. Circuit Theory Appl., 2015, 43, ( 9 ), pp. 1209 – 1225. Available from: http://doi.wiley.com/10.1002/cta.1999
dc.identifier.citedreferenceErseghe T.: ‘ Distributed optimal power flow using ADMM ’, IEEE Trans. Power Syst., 2014, 29, ( 5 ), pp. 2370 – 2380
dc.identifier.citedreferenceDisfani V.R. Fan L. Miao Z.: ‘Distributed DC optimal power flow for radial networks through partial primal dual algorithm’. In 2015 IEEE Power & Energy Society General Meeting, Denver, USA, 2015, pp. 1 – 5. Available from: http://ieeexplore.ieee.org/document/7286528/
dc.identifier.citedreferenceOlfati‐Saber R. Fax J.A. Murray R.M.: ‘ Consensus and cooperation in networked multi‐agent systems ’, Proc. IEEE, 2007, 95, ( 1 ), pp. 215 – 233. Available from: http://ieeexplore.ieee.org/document/4118472/
dc.identifier.citedreferenceNikoobakht A. Aghaei J. Niknam T. et al.: ‘ Towards robust OPF solution strategy for the future ac/dc grids: case of VSCHVDC‐connected offshore wind farms ’, IET Renew. Power Gener., 2018, 12, ( 6 ), pp. 691 – 701
dc.identifier.citedreferenceNikoobakht A. Mardaneh M. Aghaei J. et al.: ‘ Flexible power system operation accommodating uncertain wind power generation using transmission topology control: an improved linearised AC SCUC model ’, IET Gener. Transm. Distrib., 2017, 11, ( 1 ), pp. 142 – 153
dc.identifier.citedreferenceGlavitsch H. Bacher R.: ‘ Optimal power flow algorithms ’, Anal. Control Syst. Tech. Electr. Power Syst., 1991, 41, pp. 135 – 205. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780120127412500087
dc.identifier.citedreferenceTinney W. Hart C.: ‘ Power flow solution by Newton’s method ’, IEEE Trans. Power Appar. Syst., 1967, PAS‐86, ( 11 ), pp. 1449 – 1460. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4073219
dc.identifier.citedreferenceda Costa V.M. Martins N. Pereira J.L.R.: ‘ Developments in the Newton Raphson power flow formulation based on current injections ’, IEEE Trans. Power Syst., 1999, 14, ( 4 ), pp. 1320 – 1326. Available from: http://ieeexplore.ieee.org/document/801891/
dc.identifier.citedreferenceWard J.B. Hale H.W.: ‘ Digital computer solution of power‐flow problems [includes discussion] ’, Trans. Am. Inst. Electr. Eng. Part III: Power Appar. Syst., 1956, 75, ( 3 ), pp. 398 – 404. Available from: http://ieeexplore.ieee.org/document/4499318/
dc.identifier.citedreferenceKlump R.P. Overbye T.J.: ‘A new method for finding low‐voltage power flow solutions’. In 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, USA, 2000, vol. 1, pp. 593 – 597. Available from: http://ieeexplore.ieee.org/document/867653 /
dc.identifier.citedreferenceGhadimi N.: ‘ Two new methods for power flow tracing using bus power balance equations ’, J. Central South Univ., 2014, 21, ( 7 ), pp. 2712 – 2718. Available from: http://link.springer.com/10.1007/s11771‐014‐2233‐8
dc.identifier.citedreferenceSaber R.O. Murray R.M.: ‘ Consensus protocols for networks of dynamic agents ’. Proc. of the 2003 American Control Conf., Denver, USA, 2003, vol. 2, pp. 951 – 956. Available from: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1239709
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.