Show simple item record

Long‐Term Observations of Galactic Cosmic Ray LET Spectra in Lunar Orbit by LRO/CRaTER

dc.contributor.authorLooper, M. D.
dc.contributor.authorMazur, J. E.
dc.contributor.authorBlake, J. B.
dc.contributor.authorSpence, H. E.
dc.contributor.authorSchwadron, N. A.
dc.contributor.authorWilson, J. K.
dc.contributor.authorJordan, A. P.
dc.contributor.authorZeitlin, C.
dc.contributor.authorCase, A. W.
dc.contributor.authorKasper, J. C.
dc.contributor.authorTownsend, L. W.
dc.contributor.authorStubbs, T. J.
dc.date.accessioned2021-01-05T18:47:02Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2021-01-05T18:47:02Z
dc.date.issued2020-12
dc.identifier.citationLooper, M. D.; Mazur, J. E.; Blake, J. B.; Spence, H. E.; Schwadron, N. A.; Wilson, J. K.; Jordan, A. P.; Zeitlin, C.; Case, A. W.; Kasper, J. C.; Townsend, L. W.; Stubbs, T. J. (2020). "Long‐Term Observations of Galactic Cosmic Ray LET Spectra in Lunar Orbit by LRO/CRaTER." Space Weather 18(12): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/163885
dc.description.abstractThe Cosmic Ray Telescope for the Effects of Radiation (CRaTER) has been orbiting the Moon since 2009 aboard the Lunar Reconnaissance Orbiter (LRO). From this vantage point, it samples the interplanetary energetic particle population outside the shielding of the Earth’s magnetosphere. We report the sensor’s observations of galactic cosmic rays (GCRs) over a complete solar activity cycle. CRaTER is designed primarily to measure not the spectra of GCR particles outside the sensor but rather their effects on matter, and in particular, it measures the linear energy transfer (LET) or energy‐deposit spectrum in its silicon detectors. We have used the Geant4 radiation‐transport code to devise a background‐rejection algorithm to improve these measurements of LET under 9.9 g/cm2 of shielding, and the resulting observations show the changing radiation effects of GCRs as their intensity and spectrum vary with solar modulation. As of 2020 this intensity, after declining during solar maximum activity, has recovered to a level that exceeds by a few percent the historically high values seen during the deep solar minimum at the start of the LRO mission in 2009.Plain Language SummaryEnergetic particle radiation consists of fast‐moving atomic fragments traveling in space. The particles with the highest energy, called cosmic rays, can penetrate even thick shielding and deposit their energy into astronauts or electronics, causing radiation damage. A sensor aboard the Lunar Reconnaissance Orbiter satellite has been measuring cosmic rays in orbit around the Moon since 2009, monitoring the varying intensity of their radiation effects, and this paper reports improvements we have made to these measurements. The Sun’s output of energetic particles, magnetic fields, and so forth varies on an 11‐year cycle, and this activity affects the intensity of cosmic rays coming into the solar system. Our measurements of cosmic ray radiation effects show that, after a decline during the middle of the solar activity cycle, as of 2020 their intensity has risen back to exceed the historically high levels seen at the start of the mission.Key PointsThe Cosmic Ray Telescope for the Effects of Radiation has measured galactic cosmic rays at the Moon over a full solar activity cycleWe have used the Geant4 radiation‐transport code to improve background rejection in measurements of Linear Energy Transfer spectraThe intensity of galactic cosmic rays, as of early 2020, has recovered and now slightly exceeds the historically high levels of 2009
dc.publisherWiley Periodicals, Inc.
dc.subject.otherspace radiation
dc.subject.otherradiation effects
dc.subject.othersolar modulation
dc.subject.otherspace radiation sensors
dc.subject.otherlinear energy transfer
dc.subject.othergalactic cosmic rays
dc.titleLong‐Term Observations of Galactic Cosmic Ray LET Spectra in Lunar Orbit by LRO/CRaTER
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163885/1/swe21079_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163885/2/swe21079-sup-0001-2020SW002543-ts1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163885/3/swe21079.pdf
dc.identifier.doi10.1029/2020SW002543
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceCase, A. W., Kasper, J. C., Spence, H. E., Zeitlin, C. J., Looper, M. D., Golightly, M. J., Schwadron, N. A., Townsend, L. W., Mazur, J. E., Blake, J. B., & Iwata, Y. ( 2013 ). The deep‐space galactic cosmic ray lineal energy spectrum at solar minimum. Space Weather, 11, 361 – 368. https://doi.org/10.1002/swe.20051
dc.identifier.citedreferenceAllison, J., Amako, K., Apostolakis, J., Arce, P., Asai, M., Aso, T., Bagli, E., Bagulya, A., Banerjee, S., Barrand, G. J., & Beck, B. R. ( 2016 ). Recent developments in Geant4. Nuclear Instruments and Methods in Physics Research A, 835, 186 – 225. https://doi.org/10.1016/j.nima.2016.06.125
dc.identifier.citedreferenceMazur, J. E., Crain, W. R., Looper, M. D., Mabry, D. J., Blake, J. B., Case, A. W., Golightly, M. J., Kasper, J. C., & Spence, H. E. ( 2011 ). New measurements of total ionizing dose in the lunar environment. Space Weather, 9, S07002. https://doi.org/10.1029/2010SW000641
dc.identifier.citedreferenceLooper, M. D., Mazur, J. E., Blake, J. B., Spence, H. E., Schwadron, N. A., Golightly, M. J., Case, A. W., Kasper, J. C., & Townsend, L. W. ( 2013 ). The radiation environment near the lunar surface: CRaTER observations and Geant4 simulations. Space Weather, 11, 142 – 152. https://doi.org/10.1002/swe.20034
dc.identifier.citedreferenceInternational Commission on Radiological Protection ( 1991 ). Annex A: Quantities used in radiological protection. Annals of the ICRP, 21 ( 1–3 ), 79 – 89. https://doi.org/10.1016/0146‐6453(91)90073‐P
dc.identifier.citedreferencede Wet, W. C., Slaba, T. C., Rahmanifard, F., Wilson, J. K., Jordan, A. P., Townsend, L. W., Schwadron, N. A., & Spence, H. E. ( 2020 ). CRaTER observations and permissible mission duration for human operations in deep space. Life Sciences and Space Research, 26, 149 – 162. https://doi.org/10.1016/j.lssr.2020.04.004
dc.identifier.citedreferenceAllison, J., Amako, K., Apostolakis, J. E., Araujo, H. A., Dubois, P. A., Asai, M. A., Barrand, G. A., Capra, R. A., Chauvie, S. A., Chytracek, R. A., & Cirrone, G. A. ( 2006 ). Geant4 developments and applications. IEEE Transactions on Nuclear Science, 53 ( 1 ), 270 – 278. https://doi.org/10.1109/TNS.2006.869826
dc.identifier.citedreferenceZeitlin, C., Schwadron, N. A., Spence, H. E., Jordan, A. P., Looper, M. D., Wilson, J., Mazur, J. E., & Townsend, L. W. ( 2019 ). Update on galactic cosmic ray integral flux measurements in lunar orbit with CRaTER. Space Weather, 17, 1011 – 1017. https://doi.org/10.1029/2019SW002223
dc.identifier.citedreferenceZeitlin, C., Case, A. W., Spence, H. E., Schwadron, N. A., Golightly, M., Wilson, J. K., Kasper, J. C., Blake, J. B., Looper, M. D., Mazur, J. E., Townsend, L. W., & Iwata, Y. ( 2013 ). Measurements of galactic cosmic ray shielding with the CRaTER instrument. Space Weather, 11, 284 – 296. https://doi.org/10.1002/swe.20043
dc.identifier.citedreferenceZeitlin, C., Case, A. W., Schwadron, N. A., Spence, H. E., Mazur, J. E., Joyce, C. J., Looper, M. D., Jordan, A., Rios, R. R., Townsend, L. W., Kasper, J. C., Blake, J. B., Smith, S., Wilson, J., & Iwata, Y. ( 2016 ). Solar modulation of the deep space galactic cosmic ray lineal energy spectrum measured by CRaTER, 2009–2014. Space Weather, 14, 247 – 258. https://doi.org/10.1002/2015SW001314
dc.identifier.citedreferenceWilson, J. K., Spence, H. E., Schwadron, N. A., Case, A. W., Looper, M. D., Jordan, A. P., de Wet, W., & Kasper, J. C. ( 2019 ). Precise detections of solar particle events and a new view of the Moon. Geophysical Research Letters, 47, e2019GL085522. https://doi.org/10.1029/2019GL085522
dc.identifier.citedreferenceSpence, H. E., Case, A. W., Golightly, M. J., Heine, T., Larsen, B. A., Blake, J. B., Caranza, P., Crain, W. R., George, J., Lalic, M., Lin, A., Looper, M. D., Mazur, J. E., Salvaggio, D., Kasper, J. C., Stubbs, T. J., Doucette, M., Ford, P., Foster, R., Goeke, R., Gordon, D., Klatt, B., O’Connor, J., Smith, M., Onsager, T., Zeitlin, C., Townsend, L. W., & Charara, Y. ( 2010 ). CRaTER: The cosmic ray telescope for the effects of radiation experiment on the Lunar Reconnaissance Orbiter Mission. Space Science Reviews, 150, 243 – 284. https://doi.org/10.1007/s11214‐009‐9584‐8
dc.identifier.citedreferenceSmathers, J. B., Otte, V. A., Smith, A. R., Almond, P. R., Attix, F. H., Spokas, J. J., Quam, W. M., & Goodman, L. J. ( 1977 ). Composition of A‐150 tissue‐equivalent plastic. Medical Physics, 4 ( 1 ), 74 – 77. https://doi.org/10.1118/1.594380
dc.identifier.citedreferenceSchwadron, N. A., Wilson, J. K., Jordan, A. P., Looper, M. D., Zeitlin, C., Townsend, L. W., Spence, H. E., Legere, J., Bloser, P., Farrell, W. M., Hurley, D., Petro, N., Stubbs, T. J., & Pieters, C. ( 2018 ). Using proton radiation from the Moon to search for diurnal variation of regolith hydrogenation. Planetary and Space Science, 162, 113 – 132. https://doi.org/10.1016/j.pss.2017.09.012
dc.identifier.citedreferenceSchwadron, N. A., Rahmanifard, F., Wilson, J., Jordan, A. P., Spence, H. E., Case, A. W., de Wet, W., Farrell, W. M., Kasper, J. C., Looper, M. D., Lugaz, N., Mays, L., Mazur, J. E., Niehof, J., Petro, N., Smith, C. W., Townsend, L. W., Winslow, R., & Zeitlin, C. ( 2018 ). Update on the worsening particle radiation environment observed by CRaTER and implications for future human deep‐space exploration. Space Weather, 16, 289 – 303. https://doi.org/10.1002/2017SW001803
dc.identifier.citedreferenceSchwadron, N. A., Blake, J. B., Case, A. W., Joyce, C. J., Kasper, J., Mazur, J., Petro, N., Quinn, M., Porter, J. A., Smith, C. W., Smith, S., Spence, H. E., Townsend, L. W., Turner, R., Wilson, J. K., & Zeitlin, C. ( 2014 ). Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration? Space Weather, 12, 622 – 632. https://doi.org/10.1002/2014SW001084
dc.identifier.citedreferenceRahmanifard, F., de Wet, W. C., Schwadron, N. A., Owens, M. J., Jordan, A. P., Wilson, J. K., Joyce, C. J., Spence, H. E., Smith, C. W., & Townsend, L. W. ( 2020 ). Galactic cosmic radiation in the interplanetary space through a modern secular minimum. Space Weather, 18, e2019SW002428. https://doi.org/10.1029/2019SW002428
dc.identifier.citedreferenceO’Neill, P. M. ( 2010 ). Badhwar‐O’Neill 2010 galactic cosmic ray flux model—Revised. IEEE Transactions on Nuclear Science, 57 ( 6 ), 3148 – 3153. https://doi.org/10.1109/TNS.2010.2083688
dc.identifier.citedreferenceMewaldt, R. A., Davis, A. J., Lave, K. A., Leske, R. A., Stone, E. C., Wiedenbeck, M. E., Binns, W. R., Christian, E. R., Cummings, A. C., de Nolfo, G. A., Israel, M. H., Labrador, A. W., & von Rosenvinge, T. T. ( 2010 ). Record‐setting cosmic‐ray intensities in 2009 and 2010. Astrophysical Journal Letters, 723, L1. https://doi.org/10.1088/2041‐8205/723/1/L1
dc.identifier.citedreferenceMazur, J. E., Zeitlin, C., Schwadron, N., Looper, M. D., Townsend, L. W., Blake, J. B., & Spence, H. ( 2015 ). Update on radiation dose from galactic and solar protons at the Moon using the LRO/CRaTER microdosimeter. Space Weather, 13, 363 – 364. https://doi.org/10.1002/2015SW001175
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.