Show simple item record

Magnetization transfer ratio: a quantitative imaging biomarker for 5q spinal muscular atrophy

dc.contributor.authorKollmer, J.
dc.contributor.authorKessler, T.
dc.contributor.authorSam, G.
dc.contributor.authorHayes, J. M.
dc.contributor.authorLentz, S. I.
dc.contributor.authorHeiland, S.
dc.contributor.authorBendszus, M.
dc.contributor.authorWick, W.
dc.contributor.authorWeiler, M.
dc.date.accessioned2021-01-05T18:47:30Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:47:30Z
dc.date.issued2021-01
dc.identifier.citationKollmer, J.; Kessler, T.; Sam, G.; Hayes, J. M.; Lentz, S. I.; Heiland, S.; Bendszus, M.; Wick, W.; Weiler, M. (2021). "Magnetization transfer ratio: a quantitative imaging biomarker for 5q spinal muscular atrophy." European Journal of Neurology 28(1): 331-340.
dc.identifier.issn1351-5101
dc.identifier.issn1468-1331
dc.identifier.urihttps://hdl.handle.net/2027.42/163902
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelectrophysiology
dc.subject.otherspinal muscular atrophy (SMA)
dc.subject.otherneurodegeneration
dc.subject.othermagnetization transfer ratio (MTR)
dc.subject.othermagnetization transfer contrast (MTC) imaging
dc.titleMagnetization transfer ratio: a quantitative imaging biomarker for 5q spinal muscular atrophy
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163902/1/ene14528_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163902/2/ene14528.pdf
dc.identifier.doi10.1111/ene.14528
dc.identifier.sourceEuropean Journal of Neurology
dc.identifier.citedreferenceRichert ND, Frank JA. Magnetization transfer imaging to monitor clinical trials in multiple sclerosis. Neurology 1999; 53: S29 – S32.
dc.identifier.citedreferenceMongiovi P, Dilek N, Garland C, et al. Patient reported impact of symptoms in spinal muscular atrophy (PRISM‐SMA). Neurology 2018; 91: e1206 – e1214.
dc.identifier.citedreferenceVazquez‐Costa JF, Manez I, Alabajos A, Guevara Salazar M, Roda C, Sevilla T. Safety and efficacy of botulinum toxin A for the treatment of spasticity in amyotrophic lateral sclerosis: results of a pilot study. J Neurol 2016; 263: 1954 – 1960.
dc.identifier.citedreferenceKleyweg RP, van der Meche FG, Schmitz PI. Interobserver agreement in the assessment of muscle strength and functional abilities in Guillain‐Barre syndrome. Muscle Nerve 1991; 14: 1103 – 1109.
dc.identifier.citedreferenceO’Hagen JM, Glanzman AM, McDermott MP, et al. An expanded version of the hammersmith functional motor scale for SMA II and III patients. Neuromuscul Disord 2007; 17: 693 – 697.
dc.identifier.citedreferencePera MC, Coratti G, Forcina N, et al. Content validity and clinical meaningfulness of the HFMSE in spinal muscular atrophy. BMC Neurol 2017; 17: 39.
dc.identifier.citedreferenceMazzone ES, Mayhew A, Montes J, et al. Revised upper limb module for spinal muscular atrophy: development of a new module. Muscle Nerve 2017; 55: 869 – 874.
dc.identifier.citedreferenceCabana J, Gu Y, Boudreau M, et al. Quantitative magnetization transfer imaging made easy with qMTLab: software for data simulation, analysis, and visualization. Concept Magn Reson 2016; 44A: 263 – 277.
dc.identifier.citedreferenceMcGowan JC. The physical basis of magnetization transfer imaging. Neurology 1999; 53: S3 – S7.
dc.identifier.citedreferenceKessler T, Latzer P, Schmid D, et al. Cerebrospinal fluid proteomic profiling in nusinersen‐treated patients with spinal muscular atrophy. J Neurochem 2020; 153: 650 – 661.
dc.identifier.citedreferenceSiger‐Zajdel M, Selmaj K. Magnetisation transfer ratio analysis of normal appearing white matter in patients with familial and sporadic multiple sclerosis. J Neurol Neurosurg Psychiatry 2001; 71: 752 – 756.
dc.identifier.citedreferencevan Waesberghe JH, Barkhof F. Magnetization transfer imaging of the spinal cord and the optic nerve in patients with multiple sclerosis. Neurology 1999; 53: S46 – S48.
dc.identifier.citedreferenceSeiler S, Ropele S, Schmidt R. Magnetization transfer imaging for in vivo detection of microstructural tissue changes in aging and dementia: a short literature review. J Alzheimers Dis 2014; 42: S229 – S237.
dc.identifier.citedreferenceIannucci G, Dichgans M, Rovaris M, et al. Correlations between clinical findings and magnetization transfer imaging metrics of tissue damage in individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 2001; 32: 643 – 648.
dc.identifier.citedreferencePham M, Oikonomou D, Hornung B, et al. Magnetic resonance neurography detects diabetic neuropathy early and with proximal predominance. Ann Neurol 2015; 78: 939 – 948.
dc.identifier.citedreferenceDe Stefano N, Battaglini M, Stromillo ML, et al. Brain damage as detected by magnetization transfer imaging is less pronounced in benign than in early relapsing multiple sclerosis. Brain 2006; 129: 2008 – 2016.
dc.identifier.citedreferencevan Waesberghe JH, Kamphorst W, De Groot CJ, et al. Axonal loss in multiple sclerosis lesions: magnetic resonance imaging insights into substrates of disability. Ann Neurol 1999; 46: 747 – 754.
dc.identifier.citedreferenceZivadinov R, Dwyer MG, Hussein S, et al. Voxel‐wise magnetization transfer imaging study of effects of natalizumab and IFNbeta‐1a in multiple sclerosis. Mult Scler 2012; 18: 1125 – 1134.
dc.identifier.citedreferenceButton T, Altmann D, Tozer D, et al. Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab. Mult Scler 2013; 19: 241 – 244.
dc.identifier.citedreferenceBrown RA, Narayanan S, Arnold DL. Segmentation of magnetization transfer ratio lesions for longitudinal analysis of demyelination and remyelination in multiple sclerosis. NeuroImage 2013; 66: 103 – 109.
dc.identifier.citedreferenceArnold DL, Gold R, Kappos L, et al. Magnetization transfer ratio in the delayed‐release dimethyl fumarate DEFINE study. J Neurol 2014; 261: 2429 – 2437.
dc.identifier.citedreferencePridmore M, Castoro R, McCollum MS, Kang H, Li J, Dortch R. Length‐dependent MRI of hereditary neuropathy with liability to pressure palsies. Ann Clin Transl Neurol 2020; 7: 15 – 25.
dc.identifier.citedreferenceDortch RD, Dethrage LM, Gore JC, Smith SA, Li J. Proximal nerve magnetization transfer MRI relates to disability in charcot‐marie‐tooth diseases. Neurology 2014; 83: 1545 – 1553.
dc.identifier.citedreferenceKollmer J, Hegenbart U, Kimmich C, et al. Magnetization transfer ratio quantifies polyneuropathy in hereditary transthyretin amyloidosis. Ann Clin Transl Neurol 2020; 7: 799 – 807.
dc.identifier.citedreferenceQuerin G, El Mendili MM, Lenglet T, et al. The spinal and cerebral profile of adult spinal‐muscular atrophy: a multimodal imaging study. Neuroimage Clin 2019; 21: 101618.
dc.identifier.citedreferenceTur C, Khaleeli Z, Ciccarelli O, et al. Complementary roles of grey matter MTR and T2 lesions in predicting progression in early PPMS. J Neurol Neurosurg Psychiatry 2011; 82: 423 – 428.
dc.identifier.citedreferenceKollmer J, Hund E, Hornung B, et al. In vivo detection of nerve injury in familial amyloid polyneuropathy by magnetic resonance neurography. Brain 2015; 138: 549 – 562.
dc.identifier.citedreferenceSaffari A, Kolker S, Hoffmann GF, Weiler M, Ziegler A. Novel challenges in spinal muscular atrophy ‐ how to screen and whom to treat? Ann Clin Transl Neurol 2019; 6: 197 – 205.
dc.identifier.citedreferenceLunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008; 371: 2120 – 2133.
dc.identifier.citedreferenceFinkel RS, Mercuri E, Darras BT, et al. Nusinersen versus sham control in infantile‐onset spinal muscular atrophy. N Engl J Med 2017; 377: 1723 – 1732.
dc.identifier.citedreferenceMercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus sham control in later‐onset spinal muscular atrophy. N Engl J Med 2018; 378: 625 – 635.
dc.identifier.citedreferencePane M, Coratti G, Sansone VA, et al. Nusinersen in type 1 spinal muscular atrophy: twelve‐month real‐world data. Ann Neurol 2019; 86: 443 – 451.
dc.identifier.citedreferenceDarras BT, Chiriboga CA, Iannaccone ST, et al. Nusinersen in later‐onset spinal muscular atrophy: long‐term results from the phase 1/2 studies. Neurology 2019; 92: e2492 – e2506.
dc.identifier.citedreferenceWalter MC, Wenninger S, Thiele S, et al. Safety and treatment effects of nusinersen in longstanding adult 5q‐SMA type 3 ‐ a prospective observational study. J Neuromuscul Dis 2019; 6: 453 – 465.
dc.identifier.citedreferenceHagenacker T, Wurster CD, Gunther R, et al. Nusinersen in adults with 5q spinal muscular atrophy: a non‐interventional, multicentre, observational cohort study. Lancet Neurol 2020; 19: 317 – 325.
dc.identifier.citedreferenceKronlage M, Baumer P, Pitarokoili K, et al. Large coverage MR neurography in CIDP: diagnostic accuracy and electrophysiological correlation. J Neurol 2017; 264: 1434 – 1443.
dc.identifier.citedreferenceJende JME, Hauck GH, Diem R, et al. Peripheral nerve involvement in multiple sclerosis: demonstration by magnetic resonance neurography. Ann Neurol 2017; 82: 676 – 685.
dc.identifier.citedreferenceJende JME, Groener JB, Oikonomou D, et al. Diabetic neuropathy differs between type 1 and type 2 diabetes: Insights from magnetic resonance neurography. Ann Neurol 2018; 83: 588 – 598.
dc.identifier.citedreferenceKollmer J, Weiler M, Purrucker J, et al. MR neurography biomarkers to characterize peripheral neuropathy in AL amyloidosis. Neurology 2018; 91: e625 – e634.
dc.identifier.citedreferenceKollmer J, Hilgenfeld T, Ziegler A, et al. Quantitative MR neurography biomarkers in 5q‐linked spinal muscular atrophy. Neurology 2019; 93: e653 – e664.
dc.identifier.citedreferenceWolff SD, Balaban RS. Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magn Reson Med 1989; 10: 135 – 144.
dc.identifier.citedreferenceDoes MD, Beaulieu C, Allen PS, Snyder RE. Multi‐component T1 relaxation and magnetisation transfer in peripheral nerve. Magn Reson Imaging 1998; 16: 1033 – 1041.
dc.identifier.citedreferenceKollmer J, Kastel T, Jende JME, Bendszus M, Heiland S. Magnetization transfer ratio in peripheral nerve tissue: does it depend on age or location? Invest Radiol 2018; 53: 397 – 402.
dc.identifier.citedreferenceCedarbaum JM, Stambler N, Malta E, et al. The ALSFRS‐R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS study group (Phase III). J Neurol Sci 1999; 169: 13 – 21.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.