Show simple item record

Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In)

dc.contributor.authorCao, Yu
dc.contributor.authorSu, Xianli
dc.contributor.authorMeng, Fanchen
dc.contributor.authorBailey, Trevor P.
dc.contributor.authorZhao, Jinggeng
dc.contributor.authorXie, Hongyao
dc.contributor.authorHe, Jian
dc.contributor.authorUher, Ctirad
dc.contributor.authorTang, Xinfeng
dc.date.accessioned2021-01-05T18:47:47Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2021-01-05T18:47:47Z
dc.date.issued2020-12
dc.identifier.citationCao, Yu; Su, Xianli; Meng, Fanchen; Bailey, Trevor P.; Zhao, Jinggeng; Xie, Hongyao; He, Jian; Uher, Ctirad; Tang, Xinfeng (2020). "Origin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In)." Advanced Functional Materials 30(51): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/163913
dc.description.abstractDespite the same crystal structure and homologous constituent elements, the chalcopyrite compounds ABTe2 (A = Cu, Ag; B = Ga, In) exhibit distinct electronic and thermal transport properties. The aim of this work is to understand the origin of such discrepancy employing experiments and theoretical calculations. The results of Hall coefficient measurements, absorption spectroscopy, and electronic transport studies suggest the deep‐level in‐gap states induced by the native A‐site vacancies play a key role in the observed intrinsic semiconductor to degenerate semiconductor transition and are the origins of the distinct electrical conductivity among ABTe2 compounds. In addition, the cryogenic heat capacity measurements and calculated phonon dispersion relations show that the acoustic and low‐frequency optical modes of AgGaTe2 and AgInTe2 are governed by the vibrations of AgTe clusters while the counterparts of CuGaTe2 and CuInTe2 compounds are dominated by the vibrations of Te atoms, and the coupling between the acoustic and low‐frequency optical modes is notably different among ABTe2 compounds. Specifically, lower avoided‐crossing frequencies, lower sound velocity together with stronger Umklapp process yield lower thermal conductivities of AgGaTe2 and AgInTe2 than CuGaTe2 and CuInTe2. This work provides new insights into the understanding and improvement of electrical and thermal properties toward higher thermoelectric performance of chalcopyrite compounds.Distinct electronic transport properties are observed among ABTe2 (A = Cu, Ag; B = Ga, In) chalcopyrite compounds, resulting from the different physical characteristics of the deep‐level in‐gap states induced by the native A‐site vacancies. Despite the discrepancy in sound velocity, the Grüeneissen parameter together with the coupling between the acoustic and low‐frequency optical modes account for their different thermal transport properties.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdeep levels
dc.subject.otherthermoelectrics
dc.subject.otherboson peaks
dc.subject.otherphonon scattering
dc.subject.otherchalcopyrites
dc.titleOrigin of the Distinct Thermoelectric Transport Properties of Chalcopyrite ABTe2 (A = Cu, Ag; B = Ga, In)
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163913/1/adfm202005861.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163913/2/adfm202005861_am.pdf
dc.identifier.doi10.1002/adfm.202005861
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceP.‐W. Chiang, D. F. O’Kane, D. R. Mason, J. Electrochem. Soc. 1967, 114, 759.
dc.identifier.citedreferenceB. K. Min, B. S. Kim, I. H. Kim, J. K. Lee, M. H. Kim, M. W. Oh, S. D. Park, H. W. Lee, Electron. Mater. Lett. 2011, 7, 255.
dc.identifier.citedreferenceB. Du, H. Li, J. Xu, X. Tang, C. Uher, Chem. Mater. 2010, 22, 5521.
dc.identifier.citedreferenceY. Zhu, Y. Liu, M. Wood, N. Z. Koocher, Y. Liu, L. Liu, T. Hu, J. M. Rondinelli, J. Hong, G. J. Snyder, W. Xu, Chem. Mater. 2019, 31, 8182.
dc.identifier.citedreferenceD. Schmid, M. Ruckh, F. Grunwald, H. W. Schock, J. Appl. Phys. 1993, 73, 2902.
dc.identifier.citedreferenceA. Congiu, L. Garbato, P. Manca, Mater. Res. Bull. 1973, 8, 293.
dc.identifier.citedreferenceG. Tan, W. G. Zeier, F. Shi, P. Wang, G. J. Snyder, V. P. Dravid, M. G. Kanatzidis, Chem. Mater. 2015, 27, 7801.
dc.identifier.citedreferenceW.‐S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Adv. Energy Mater. 2011, 1, 577.
dc.identifier.citedreferenceA. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Rüffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, Q. Williams, J. Balogh, K. Parliński, P. Jochym, P. Piekarz, Phys. Rev. Lett. 2011, 106, 225501.
dc.identifier.citedreferenceV. Lubchenko, P. G. Wolynes, Proc. Natl. Acad. Sci. USA 2003, 100, 1515.
dc.identifier.citedreferenceT. S. Grigera, V. Martín‐Mayor, G. Parisi, P. Verrocchio, Nature 2003, 422, 289.
dc.identifier.citedreferenceE. Duval, A. Boukenter, T. Achibat, J. Phys.: Condens. Matter 1990, 2, 10227.
dc.identifier.citedreferenceD. A. Parshin, H. R. Schober, V. L. Gurevich, Phys. Rev. B 2007, 76, 064206.
dc.identifier.citedreferenceH. Tanaka, J. Phys. Soc. Jpn. 2001, 70, 1178.
dc.identifier.citedreferenceA. I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, W. Petry, Phys. Rev. Lett. 2004, 92, 245508.
dc.identifier.citedreferenceH. Shintani, H. Tanaka, Nat. Mater. 2008, 7, 870.
dc.identifier.citedreferenceJ. He, D. Hitchcock, I. Bredeson, N. Hickman, T. M. Tritt, S. Zhang, Phys. Rev. B 2010, 81, 134302.
dc.identifier.citedreferenceV. Gurevich, D. Parshin, H. Schober, Phys. Rev. B 2003, 67, 094203.
dc.identifier.citedreferenceS. N. Taraskin, Y. L. Loh, G. Natarajan, S. R. Elliott, Phys. Rev. Lett. 2001, 86, 1255.
dc.identifier.citedreferenceH. Xie, X. Su, X. Zhang, S. Hao, T. P. Bailey, C. C. Stoumpos, A. P. Douvalis, X. Hu, C. Wolverton, V. P. Dravid, C. Uher, X. Tang, M. G. Kanatzidis, J. Am. Chem. Soc. 2019, 141, 10905.
dc.identifier.citedreferenceF. Liu, P. Parajuli, R. Rao, P. C. Wei, A. Karunarathne, S. Bhattacharya, R. Podila, J. He, B. Maruyama, G. Priyadarshan, J. R. Gladden, Y. Y. Chen, A. M. Rao, Phys. Rev. B 2018, 98, 224309.
dc.identifier.citedreferenceA. Fischer, E.‐W. Scheidt, W. Scherer, D. E. Benson, Y. Wu, D. Eklöf, U. Häussermann, Phys. Rev. B 2015, 91, 224309.
dc.identifier.citedreferenceJ. Callaway, Phys. Rev. 1959, 113, 1046.
dc.identifier.citedreferenceJ. Callaway, H. C. von Baeyer, Phys. Rev. 1960, 120, 1149.
dc.identifier.citedreferenceJ. Cohn, G. Nolas, V. Fessatidis, T. Metcalf, G. Slack, Phys. Rev. Lett. 1999, 82, 779.
dc.identifier.citedreferenceJ. Yang, G. P. Meisner, D. T. Morelli, C. Uher, Phys. Rev. B 2000, 63, 014410.
dc.identifier.citedreferenceW. Zhao, Z. Liu, P. Wei, Q. Zhang, W. Zhu, X. Su, X. Tang, J. Yang, Y. Liu, J. Shi, Y. Chao, S. Lin, Y. Pei, Nat. Nanotechnol. 2017, 12, 55.
dc.identifier.citedreferenceP. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin‐Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys.: Condens. Matter 2009, 21, 395502.
dc.identifier.citedreferenceJ. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceH. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188.
dc.identifier.citedreferenceG. Tan, L. D. Zhao, M. G. Kanatzidis, Chem. Rev. 2016, 116, 12123.
dc.identifier.citedreferenceK. Biswas, J. He, I. D. Blum, C.‐I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.
dc.identifier.citedreferenceZ. L. Wang, W. Wu, Angew. Chem., Int. Ed. 2012, 51, 11700.
dc.identifier.citedreferenceS. Ortega, M. Ibáñez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid, A. Cabot, Chem. Soc. Rev. 2017, 46, 3510.
dc.identifier.citedreferenceX. Su, P. Wei, H. Li, W. Liu, Y. Yan, P. Li, C. Su, C. Xie, W. Zhao, P. Zhai, Q. Zhang, X. Tang, C. Uher, Adv. Mater. 2017, 29, 1602013.
dc.identifier.citedreferenceW. Liu, J. Hu, S. Zhang, M. Deng, C.‐G. Han, Y. Liu, Mater. Today Phys. 2017, 1, 50.
dc.identifier.citedreferenceW. Liu, J. Zhou, Q. Jie, Y. Li, H. S. Kim, J. Bao, G. Chen, Z. Ren, Energy Environ. Sci. 2016, 9, 530.
dc.identifier.citedreferenceR. Deng, X. Su, S. Hao, Z. Zheng, M. Zhang, H. Xie, W. Liu, Y. Yan, C. Wolverton, C. Uher, M. G. Kanatzidis, X. Tang, Energy Environ. Sci. 2018, 11, 1520.
dc.identifier.citedreferenceY. Li, Z. Li, C. Zhang, D. Yang, T. Liu, Y. Yan, W. Liu, G. Tan, X. Su, C. Uher, X. Tang, Mater. Today Phys. 2019, 9, 100098.
dc.identifier.citedreferenceG. J. Snyder, A. H. Snyder, Energy Environ. Sci. 2017, 10, 2280.
dc.identifier.citedreferenceJ. He, T. M. Tritt, Science 2017, 357, eaak9997.
dc.identifier.citedreferenceP. Ying, X. Li, Y. Wang, J. Yang, C. Fu, W. Zhang, X. Zhao, T. Zhu, Adv. Funct. Mater. 2017, 27, 1604145.
dc.identifier.citedreferenceX. Su, S. Hao, T. P. Bailey, S. Wang, I. Hadar, G. Tan, T.‐B. Song, Q. Zhang, C. Uher, C. Wolverton, X. Tang, M. G. Kanatzidis, Adv. Energy Mater. 2018, 8, 1800659.
dc.identifier.citedreferenceW. G. Zeier, A. Zevalkink, Z. M. Gibbs, G. Hautier, M. G. Kanatzidis, G. J. Snyder, Angew. Chem., Int. Ed. 2016, 55, 6826.
dc.identifier.citedreferenceQ. Zhang, E. K. Chere, J. Sun, F. Cao, K. Dahal, S. Chen, G. Chen, Z. Ren, Adv. Energy Mater. 2015, 5, 1500360.
dc.identifier.citedreferenceS. Anand, K. Xia, T. Zhu, C. Wolverton, G. J. Snyder, Adv. Energy Mater. 2018, 8, 1801409.
dc.identifier.citedreferenceG. Tan, F. Shi, S. Hao, H. Chi, L. D. Zhao, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 5100.
dc.identifier.citedreferenceY. Xiao, H. Wu, W. Li, M. Yin, Y. Pei, Y. Zhang, L. Fu, Y. Chen, S. J. Pennycook, L. Huang, J. He, L.‐D. Zhao, J. Am. Chem. Soc. 2017, 139, 18732.
dc.identifier.citedreferenceK. Ahn, H. Shin, J. Im, S. H. Park, I. Chung, ACS Appl. Mater. Interfaces 2017, 9, 3766.
dc.identifier.citedreferenceW. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Adv. Mater. 2017, 29, 1605887.
dc.identifier.citedreferenceG. Zheng, X. Su, H. Xie, Y. Shu, T. Liang, X. She, W. Liu, Y. Yan, Q. Zhang, C. Uher, M. G. Kanatzidis, X. Tang, Energy Environ. Sci. 2017, 10, 2638.
dc.identifier.citedreferenceY. Li, X. Wang, G. Liu, B. Shin, F. Shan, Scr. Mater. 2019, 172, 88.
dc.identifier.citedreferenceG. Zheng, X. Su, X. Li, T. Liang, H. Xie, X. She, Y. Yan, C. Uher, M. G. Kanatzidis, X. Tang, Adv. Energy Mater. 2016, 6, 1600595.
dc.identifier.citedreferenceY. Tang, R. Hanus, S. Chen, G. J. Snyder, Nat. Commun. 2015, 6, 7584.
dc.identifier.citedreferenceA. Moure, M. Rull‐Bravo, B. Abad, A. Del Campo, M. M. Rojo, M. H. Aguirre, A. Jacquot, J. F. Fernandez, M. Martin‐Gonzalez, Nano Energy 2017, 31, 393.
dc.identifier.citedreferenceP. Zong, R. Hanus, M. Dylla, Y. Tang, J. Liao, Q. Zhang, G. J. Snyder, L. Chen, Energy Environ. Sci. 2017, 10, 183.
dc.identifier.citedreferenceG. Tan, F. Shi, S. Hao, H. Chi, T. P. Bailey, L. D. Zhao, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2015, 137, 11507.
dc.identifier.citedreferenceG. Tan, S. Hao, R. C. Hanus, X. Zhang, S. Anand, T. P. Bailey, A. J. E. Rettie, X. Su, C. Uher, V. P. Dravid, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, ACS Energy Lett. 2018, 3, 705.
dc.identifier.citedreferenceA. Banik, U. S. Shenoy, S. Saha, U. V. Waghmare, K. Biswas, J. Am. Chem. Soc. 2016, 138, 13068.
dc.identifier.citedreferenceY.‐L. Pei, J. He, J.‐F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, L.‐D. Zhao, NPG Asia Mater. 2013, 5, e47.
dc.identifier.citedreferenceL.‐D. Zhao, J. He, D. Berardan, Y. Lin, J.‐F. Li, C.‐W. Nan, N. Dragoe, Energy Environ. Sci. 2014, 7, 2900.
dc.identifier.citedreferenceD. Yang, X. Su, Y. Yan, T. Hu, H. Xie, J. He, C. Uher, M. G. Kanatzidis, X. Tang, Chem. Mater. 2016, 28, 4628.
dc.identifier.citedreferenceX. Su, N. Zhao, S. Hao, C. C. Stoumpos, M. Liu, H. Chen, H. Xie, Q. Zhang, C. Wolverton, X. Tang, M. G. Kanatzidis, Adv. Funct. Mater. 2019, 29, 1806534.
dc.identifier.citedreferenceD. Parker, D. J. Singh, Phys. Rev. B 2012, 85, 125209.
dc.identifier.citedreferenceX. Cheng, Y. You, J. Fu, T. Hu, W. Liu, X. Su, Y. Yan, X. Tang, J. Alloys Compd. 2018, 750, 965.
dc.identifier.citedreferenceY. Li, G. Liu, T. Cao, L. Liu, J. Li, K. Chen, L. Li, Y. Han, M. Zhou, Adv. Funct. Mater. 2016, 26, 6025.
dc.identifier.citedreferenceL. Xi, Y. B. Zhang, X. Y. Shi, J. Yang, X. Shi, L. D. Chen, W. Zhang, J. Yang, D. J. Singh, Phys. Rev. B 2012, 86, 155201.
dc.identifier.citedreferenceQ. Tan, W. Sun, Z. Li, J.‐F. Li, J. Alloys Compd. 2016, 672, 558.
dc.identifier.citedreferenceH. Xie, X. Su, G. Zheng, T. Zhu, K. Yin, Y. Yan, C. Uher, M. G. Kanatzidis, X. Tang, Adv. Energy Mater. 2017, 7, 1601299.
dc.identifier.citedreferenceH. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi, K. Hirose, N. Tsujii, T. Mori, Mater. Today Phys. 2017, 3, 85.
dc.identifier.citedreferenceS. W. Lovesey, K. S. Knight, C. Detlefs, S. W. Huang, V. Scagnoli, U. Staub, J. Phys.: Condens. Matter 2012, 24, 216001.
dc.identifier.citedreferenceL. Xue, B. Xu, D. Zhao, L. Yi, Intermetallics 2014, 55, 204.
dc.identifier.citedreferenceY. Zhong, P. Wang, H. Mei, Z. Jia, N. Cheng, Semicond. Sci. Technol. 2018, 33, 065014.
dc.identifier.citedreferenceJ. Shen, X. Zhang, Z. Chen, S. Lin, J. Li, W. Li, S. Li, Y. Chen, Y. Pei, J. Mater. Chem. A 2017, 5, 5314.
dc.identifier.citedreferenceW. D. Carr, D. T. Morelli, J. Alloys Compd. 2015, 630, 277.
dc.identifier.citedreferenceT. Plirdpring, K. Kurosaki, A. Kosuga, T. Day, S. Firdosy, V. Ravi, G. J. Snyder, A. Harnwunggmoung, T. Sugahara, Y. Ohishi, H. Muta, S. Yamanaka, Adv. Mater. 2012, 24, 3622.
dc.identifier.citedreferenceZ. Xia, G. Wang, X. Zhou, W. Wen, Mater. Res. Bull. 2018, 101, 184.
dc.identifier.citedreferenceR. Liu, Y. Qin, N. Cheng, J. Zhang, X. Shi, Y. Grin, L. Chen, Inorg. Chem. Front. 2016, 3, 1167.
dc.identifier.citedreferenceR. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Chem. Commun. 2012, 48, 3818.
dc.identifier.citedreferenceY. Zhong, Y. Luo, X. Li, J. Cui, Sci. Rep. 2019, 9, 18879.
dc.identifier.citedreferenceA. Yusufu, K. Kurosaki, A. Kosuga, T. Sugahara, Y. Ohishi, H. Muta, S. Yamanaka, Appl. Phys. Lett. 2011, 99, 061902.
dc.identifier.citedreferenceR. Funahashi, S. Urata, K. Mizuno, T. Kouuchi, M. Mikami, Appl. Phys. Lett. 2004, 85, 1036.
dc.identifier.citedreferenceJ. Androulakis, I. Todorov, D.‐Y. Chung, S. Ballikaya, G. Wang, C. Uher, M. Kanatzidis, Phys. Rev. B 2010, 82, 115209.
dc.identifier.citedreferenceY.‐J. Kim, L.‐D. Zhao, M. G. Kanatzidis, D. N. Seidman, ACS Appl. Mater. Interfaces 2017, 9, 21791.
dc.identifier.citedreferenceK. C. Mandal, A. Smirnov, U. N. Roy, A. Burger, Mater. Res. Soc. Symp. Proc. 2002, 744, 131.
dc.identifier.citedreferenceJ. Shewchun, J. J. Loferski, R. Beaulieu, G. H. Chapman, B. K. Garside, J. Appl. Phys. 1979, 50, 6978.
dc.identifier.citedreferenceJ. Krustok, A. Jagomagi, M. Grossberg, J. Raudoja, M. Danilson, Sol. Energy Mater. Sol. Cells 2006, 90, 1973.
dc.identifier.citedreferenceJ. Krustok, J. Raudoja, M. Yakushev, R. D. Pilkington, H. Collan, J. Appl. Phys. 1999, 86, 5305.
dc.identifier.citedreferenceA. Jagomägi, J. Krustok, J. Raudoja, M. Grossberg, I. Oja, M. Krunks, M. Danilson, Thin Solid Films 2005, 480, 246.
dc.identifier.citedreferenceY. Pei, J. Lensch‐Falk, E. S. Toberer, D. L. Medlin, G. J. Snyder, Adv. Funct. Mater. 2011, 21, 241.
dc.identifier.citedreferenceH. Wu, S. Chen, T. Ikeda, G. J. Snyder, Acta Mater. 2012, 60, 6144.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.