Show simple item record

Neutrophil calprotectin identifies severe pulmonary disease in COVID‐19

dc.contributor.authorShi, Hui
dc.contributor.authorZuo, Yu
dc.contributor.authorYalavarthi, Srilakshmi
dc.contributor.authorGockman, Kelsey
dc.contributor.authorZuo, Melanie
dc.contributor.authorMadison, Jacqueline A.
dc.contributor.authorBlair, Christopher
dc.contributor.authorWoodward, Wrenn
dc.contributor.authorLezak, Sean P.
dc.contributor.authorLugogo, Njira L.
dc.contributor.authorWoods, Robert J.
dc.contributor.authorLood, Christian
dc.contributor.authorKnight, Jason S.
dc.contributor.authorKanthi, Yogendra
dc.date.accessioned2021-01-05T18:49:36Z
dc.date.availableWITHHELD_13_MONTHS
dc.date.available2021-01-05T18:49:36Z
dc.date.issued2021-01
dc.identifier.citationShi, Hui; Zuo, Yu; Yalavarthi, Srilakshmi; Gockman, Kelsey; Zuo, Melanie; Madison, Jacqueline A.; Blair, Christopher; Woodward, Wrenn; Lezak, Sean P.; Lugogo, Njira L.; Woods, Robert J.; Lood, Christian; Knight, Jason S.; Kanthi, Yogendra (2021). "Neutrophil calprotectin identifies severe pulmonary disease in COVID‐19." Journal of Leukocyte Biology 109(1): 67-72.
dc.identifier.issn0741-5400
dc.identifier.issn1938-3673
dc.identifier.urihttps://hdl.handle.net/2027.42/163970
dc.description.abstractSevere cases of coronavirus disease 2019 (COVID‐19) are regularly complicated by respiratory failure. Although it has been suggested that elevated levels of blood neutrophils associate with worsening oxygenation in COVID‐19, it is unknown whether neutrophils are drivers of the thrombo‐inflammatory storm or simple bystanders. To better understand the potential role of neutrophils in COVID‐19, we measured levels of the neutrophil activation marker S100A8/A9 (calprotectin) in hospitalized patients and determined its relationship to severity of illness and respiratory status. Patients with COVID‐19 (n = 172) had markedly elevated levels of calprotectin in their blood. Calprotectin tracked with other acute phase reactants including C‐reactive protein, ferritin, lactate dehydrogenase, and absolute neutrophil count, but was superior in identifying patients requiring mechanical ventilation. In longitudinal samples, calprotectin rose as oxygenation worsened. When tested on day 1 or 2 of hospitalization (n = 94 patients), calprotectin levels were significantly higher in patients who progressed to severe COVID‐19 requiring mechanical ventilation (8039 ± 7031 ng/ml, n = 32) as compared to those who remained free of intubation (3365 ± 3146, P < 0.0001). In summary, serum calprotectin levels track closely with current and future COVID‐19 severity, implicating neutrophils as potential perpetuators of inflammation and respiratory compromise in COVID‐19.Graphical AbstractSerum calprotectin levels track closely with current and future COVID‐19 severity, potentially implicating neutrophils as active perpetuators of inflammation and respiratory compromise in COVID‐19.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherneutrophils
dc.subject.othercalprotectin
dc.subject.otherneutrophil extracellular traps
dc.subject.otherSARS‐CoV‐2
dc.subject.otherCOVID‐19
dc.titleNeutrophil calprotectin identifies severe pulmonary disease in COVID‐19
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163970/1/jlb10790_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163970/2/jlb10790.pdf
dc.identifier.doi10.1002/JLB.3COVCRA0720-359R
dc.identifier.sourceJournal of Leukocyte Biology
dc.identifier.citedreferenceNishikawa Y, Kajiura Y, Lew JH, Kido JI, Nagata T, Naruishi K. Calprotectin induces IL‐6 and MCP‐1 production via Toll‐like receptor 4 signaling in human gingival fibroblasts. J Cell Physiol. 2017; 232: 1862 ‐ 1871.
dc.identifier.citedreferenceBartakova E, Stefan M, Stranikova A, et al. Calprotectin and calgranulin C serum levels in bacterial sepsis. Diagn Microbiol Infect Dis. 2019; 93: 219 ‐ 226.
dc.identifier.citedreferenceSipponen T, Kolho KL. Fecal calprotectin in diagnosis and clinical assessment of inflammatory bowel disease. Scand J Gastroenterol. 2015; 50: 74 ‐ 80.
dc.identifier.citedreferenceTyden H, Lood C, Gullstrand B, et al. Pro‐inflammatory S100 proteins are associated with glomerulonephritis and anti‐dsDNA antibodies in systemic lupus erythematosus. Lupus. 2017; 26: 139 ‐ 149.
dc.identifier.citedreferenceGuo Q, Zha X, Li C, et al. Serum calprotectin–a promising diagnostic marker for adult‐onset Still’s disease. Clin Rheumatol. 2016; 35: 73 ‐ 79.
dc.identifier.citedreferenceMorrow DA, Wang Y, Croce K, et al. Myeloid‐related protein 8/14 and the risk of cardiovascular death or myocardial infarction after an acute coronary syndrome in the pravastatin or atorvastatin evaluation and infection therapy: thrombolysis in myocardial infarction (PROVE IT‐TIMI 22) trial. Am Heart J. 2008; 155: 49 ‐ 55.
dc.identifier.citedreferenceGong J, Dong H, Xia SQ, et al. Correlation analysis between disease severity and inflammation‐related parameters in patients with COVID‐19 pneumonia. medRxiv. 2020. 2020.02.25.20025643.
dc.identifier.citedreferenceZhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil‐to‐lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID‐19. medRxiv. 2020. 2020.03.12.20035048.
dc.identifier.citedreferenceLiu Y, Du X, Chen J, et al. Neutrophil‐to‐lymphocyte ratio as an independent risk factor for mortality in hospitalized patients with COVID‐19. J Infect. 2020; 81: e6 ‐ e12.
dc.identifier.citedreferenceZuo Y, Yalavarthi S, Shi H, et al. Neutrophil extracellular traps in COVID‐19. JCI Insight. 2020. 10.1172/jci.insight.138999
dc.identifier.citedreferenceMiddleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps (NETs) contribute to immunothrombosis in COVID‐19 acute respiratory distress syndrome. Blood. 2020. https://doi.org/10.1182/blood.2020007008
dc.identifier.citedreferenceNilsen T, Haugen SH, Larsson A. Extraction, isolation, and concentration of calprotectin antigen (S100A8/S100A9) from granulocytes. Health Sci Rep. 2018; 1: e35.
dc.identifier.citedreferenceVoganatsi A, Panyutich A, Miyasaki KT, Murthy RK. Mechanism of extracellular release of human neutrophil calprotectin complex. J Leukoc Biol. 2001: 70;130‐134.
dc.identifier.citedreferenceHetland G, Talgo GJ, Fagerhol MK. Chemotaxins C5a and fMLP induce release of calprotectin (leucocyte L1 protein) from polymorphonuclear cells in vitro. Molecular Pathology Mp. 1998; 51: 143 ‐ 148.
dc.identifier.citedreferencePruenster M, Kurz ARM, Chung KJ, et al. Extracellular MRP8/14 is a regulator of [beta]2 integrin‐dependent neutrophil slow rolling and adhesion. Nat Commun. 2015; 6: 6915.
dc.identifier.citedreferenceBarnes BJ, Adrover JM, Baxter‐Stoltzfus A, et al. Targeting potential drivers of COVID‐19: neutrophil extracellular traps. J Exp Med. 2020; 217: e20200652.
dc.identifier.citedreferenceUrban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009; 5: e1000639.
dc.identifier.citedreferenceBianchi M, Niemiec MJ, Siler U, Urban CF, Reichenbach J. Restoration of anti‐Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin‐dependent. J Allergy Clin Immunol. 2011; 127: 1243 ‐ 1252. e7.
dc.identifier.citedreferenceEhlermann P, Eggers K, Bierhaus A, et al. Increased proinflammatory endothelial response to S100A8/A9 after preactivation through advanced glycation end products. Cardiovasc Diabetol. 2006; 5. https://doi.org/10.1186/1475-2840-5-6
dc.identifier.citedreferenceNarumi K, Ryosuke Ueda et al.. Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE. J Immunol. 2015; 194: 5539 ‐ 5548.
dc.identifier.citedreferenceEhrchen JM, Sunderkotter C, Foell D, Vogl T, Roth J. The endogenous Toll‐like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 2009; 86: 557 ‐ 566.
dc.identifier.citedreferenceRodriguez‐Barrueco R, Yu J, Saucedo‐Cuevas LP. Inhibition of the autocrine IL‐6‐JAK2‐STAT3‐calprotectin axis as targeted therapy for HR‐/HER2+ breast cancers. Genes Dev. 2015; 29: 1631 ‐ 1648.
dc.identifier.citedreferenceWang S, S R, Wang Z, Jing Z, Wang S, Ma J. S100A8/A9 in inflammation. Front Immunol. 2018; 9: 1298.
dc.identifier.citedreferenceMizobuchi H, Yamakoshi S, Omachi S, et al. The accumulation of macrophages expressing myeloid‐related protein 8 (MRP8) and MRP14 in the spleen of BALB/cA mice during infection with Plasmodium berghei. Exper Parasitol. 2014; 138: 1 ‐ 8.
dc.identifier.citedreferenceTsai SY, Segovia JA, Chang TH, et al. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21‐TRIF‐TLR4‐MyD88. Pathway. 2014; 10: e1003848.
dc.identifier.citedreferenceSimard JC, Simon MM, Tessier PA, Girard D. Damage‐associated molecular pattern S100A9 increases bactericidal activity of human neutrophils by enhancing phagocytosis. J Immunol. 2011; 186: 3622 ‐ 3631.
dc.identifier.citedreferenceSimard JC, Girard D, Tessier PA. Induction of neutrophil degranulation by S100A9 via a MAPK‐dependent mechanism. J Leukoc Biol. 2010; 87: 905 ‐ 914.
dc.identifier.citedreferenceWang Y, Gao H, Kessinger CW, Schmaier A, Jaffer FA, Simon DI. Myeloid‐related protein‐14 regulates deep vein thrombosis. JCI Insight. 2017; 2: e91356.
dc.identifier.citedreferenceHealy AM, Pickard MD, Pradhan AD, et al. Platelet expression profiling and clinical validation of myeloid‐related protein‐14 as a novel determinant of cardiovascular events. Circulation. 2006; 113: 2278 ‐ 1184.
dc.identifier.citedreferenceCui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020. https://doi.org/10.1111/jth.14830
dc.identifier.citedreferenceKlok FA, Kruip M, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID‐19. Thromb Res. 2020; 191: 145 ‐ 147.
dc.identifier.citedreferenceThalin C, Hisada Y, Lundstrom S, Mackman N, Wallen H. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer‐associated thrombosis. Arterioscler Thromb Vasc Biol. 2019; 39: 1724 ‐ 1738.
dc.identifier.citedreferenceBarnado A, Crofford LJ, Oates JC. At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol. 2016; 99: 265 ‐ 278.
dc.identifier.citedreferenceKanthi Y, Knight JS, Zuo Y, Pinsky DJ. New (re)Purpose for an old drug: purinergic receptor blockade may extinguish the COVID‐19 thrombo‐inflammatory firestorm. JCI Insight. 2020; 5: e140971.
dc.identifier.citedreferenceWang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus‐infected pneumonia in Wuhan, China. JAMA. 2020; 323: 1061 ‐ 1069.
dc.identifier.citedreferenceDale I, Brandtzaeg P, Fagerhol MK, Scott H. Distribution of a new myelomonocytic antigen (L1) in human peripheral blood leukocytes. Immunofluorescence and immunoperoxidase staining features in comparison with lysozyme and lactoferrin. Am J Clin Pathol. 1985; 84: 24 ‐ 34.
dc.identifier.citedreferenceVogl T, Tenbrock K, Ludwig S, et al. Mrp8 and Mrp14 are endogenous activators of Toll‐like receptor 4, promoting lethal, endotoxin‐induced shock. Nat Med. 2007; 13: 1042 ‐ 1049.
dc.identifier.citedreferenceRoseth AG, Fagerhol MK, Aadland E, Schjonsby H. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand J Gastroenterol. 1992; 27: 793 ‐ 798.
dc.identifier.citedreferenceBerntzen HB, Olmez U, Fagerhol MK, Munthe E. The leukocyte protein L1 in plasma and synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Scand J Rheumatol. 1991; 20: 74 ‐ 82.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.