Show simple item record

Dopamine D4 receptor modulates inhibitory transmission in pallido- pallidal terminals and regulates motor behavior

dc.contributor.authorConde Rojas, Israel
dc.contributor.authorAcosta‐garcía, Jackeline
dc.contributor.authorCaballero‐florán, Rene Nahum
dc.contributor.authorJijón‐lorenzo, Rafael
dc.contributor.authorRecillas‐morales, Sergio
dc.contributor.authorAvalos‐fuentes, José Arturo
dc.contributor.authorPaz‐bermúdez, Francisco
dc.contributor.authorLeyva‐gómez, Gerardo
dc.contributor.authorCortés, Hernán
dc.contributor.authorFlorán, Benjamín
dc.date.accessioned2021-01-05T18:49:43Z
dc.date.availableWITHHELD_12_MONTHS
dc.date.available2021-01-05T18:49:43Z
dc.date.issued2020-12
dc.identifier.citationConde Rojas, Israel; Acosta‐garcía, Jackeline ; Caballero‐florán, Rene Nahum ; Jijón‐lorenzo, Rafael ; Recillas‐morales, Sergio ; Avalos‐fuentes, José Arturo ; Paz‐bermúdez, Francisco ; Leyva‐gómez, Gerardo ; Cortés, Hernán ; Florán, Benjamín (2020). "Dopamine D4 receptor modulates inhibitory transmission in pallido- pallidal terminals and regulates motor behavior." European Journal of Neuroscience (11): 4563-4585.
dc.identifier.issn0953-816X
dc.identifier.issn1460-9568
dc.identifier.urihttps://hdl.handle.net/2027.42/163974
dc.description.abstractTwo major groups of terminals release GABA within the Globus pallidus; one group is constituted by projections from striatal neurons, while endings of the intranuclear collaterals form the other one. Each neurons’ population expresses different subtypes of dopamine D2- like receptors: D2R subtype is expressed by encephalin- positive MSNs, while pallidal neurons express the D4R subtype. The D2R modulates the firing rate of striatal neurons and GABA release at their projection areas, while the D4R regulates Globus pallidus neurons excitability and GABA release at their projection areas. However, it is unknown if these receptors control GABA release at pallido- pallidal collaterals and regulate motor behavior. Here, we present neurochemical evidence of protein content and binding of D4R in pallidal synaptosomes, control of [3H] GABA release in pallidal slices of rat, electrophysiological evidence of the presence of D4R on pallidal recurrent collaterals in mouse slices, and turning behavior induced by D4R antagonist microinjected in amphetamine challenged rats. As in projection areas of pallidal neurons, GABAergic transmission in pallido- pallidal recurrent synapses is under modulation of D4R, while the D2R subtype, as known, modulates striato- pallidal projections. Also, as in projection areas, D4R contributes to control the motor activity differently than D2R. This study could help to understand the organization of intra- pallidal circuitry.GABA input to the GP via striato- pallidal projections is modulated by D2R while input via recurrent intra- nuclear collaterals is modulated by D4R.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otherdopamine
dc.subject.otherturning behavior
dc.subject.otherGlobus pallidus
dc.subject.otherGABA release
dc.titleDopamine D4 receptor modulates inhibitory transmission in pallido- pallidal terminals and regulates motor behavior
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163974/1/ejn15020_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163974/2/ejn15020-sup-0003-FigS3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/163974/3/ejn15020.pdf
dc.identifier.doi10.1111/ejn.15020
dc.identifier.sourceEuropean Journal of Neuroscience
dc.identifier.citedreferenceMunoz- Arenas, G., Paz- Bermudez, F., Baez- Cordero, A., Caballero- Floran, R., Gonzalez- Hernandez, B., Floran, B., & Limon, I. D. ( 2015 ). Cannabinoid CB1 receptors activation and coactivation with D2 receptors modulate GABAergic neurotransmission in the globus pallidus and increase motor asymmetry. Synapse (New York, N. Y.), 69 ( 3 ), 103 - 114.
dc.identifier.citedreferenceMrzljak, L., Bergson, C., Pappy, M., Huff, R., Levenson, R., & Goldman- Rakic, P. S. ( 1996 ). Localization of dopamine D4 receptors in GABAergic neurons of the primate brain. Nature, 381 ( 6579 ), 245 - 248. https://doi.org/10.1038/381245a0
dc.identifier.citedreferenceMyers, R. D. ( 1966 ). Injection of solutions into cerebral tissue: Relation between volume and diffusion. Physiology & Behavior, 1 ( 2 ), 171 - 174.
dc.identifier.citedreferenceNambu, A., & Llinas, R. ( 1994 ). Electrophysiology of globus pallidus neurons in vitro. Journal of Neurophysiology, 72 ( 3 ), 1127 - 1139.
dc.identifier.citedreferenceNambu, A., & Llinas, R. ( 1997 ). Morphology of globus pallidus neurons: Its correlation with electrophysiology in guinea pig brain slices. The Journal of Comparative Neurology, 377 ( 1 ), 85 - 94.
dc.identifier.citedreferenceNava- Asbell, C., Paz- Bermudez, F., Erlij, D., Aceves, J., & Floran, B. ( 2007 ). GABA(B) receptor activation inhibits dopamine D1 receptor- mediated facilitation of [(3)H]GABA release in substantia nigra pars reticulata. Neuropharmacology, 53 ( 5 ), 631 - 637.
dc.identifier.citedreferenceNayak, S., & Cassaday, H. J. ( 2003 ). The novel dopamine D4 receptor agonist (PD 168,077 maleate): Doses with different effects on locomotor activity are without effect in classical conditioning. Progress in Neuro- Psychopharmacology and Biological Psychiatry, 27 ( 3 ), 441 - 449.
dc.identifier.citedreferenceNewman- Tancredi, A., Heusler, P., Martel, J- C., Ormière, A- M., Leduc, N., & Cussac, D. ( 2008 ). Agonist and antagonist properties of antipsychotics at human dopamine D4.4 receptors: G- protein activation and K+ channel modulation in transfected cells. The international journal of neuropsychopharmacology, 11, 293 - 307.
dc.identifier.citedreferenceOpris, I., Lebedev, M., & Nelson, R. J. ( 2011 ). Motor planning under unpredictable reward: Modulations of movement vigor and primate striatum activity. Frontiers in Neuroscience, 5, 61.
dc.identifier.citedreferenceParent, A., & Hazrati, L. N. ( 1995a ). Functional anatomy of the basal ganglia. I. The cortico- basal ganglia- thalamo- cortical loop. Brain Research Reviews, 20 ( 1 ), 91 - 127.
dc.identifier.citedreferenceParent, A., & Hazrati, L. N. ( 1995b ). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research. Brain Research Reviews, 20 ( 1 ), 128 - 154.
dc.identifier.citedreferencePatel, S., Freedman, S., Chapman, K. L., Emms, F., Fletcher, A. E., Knowles, M., Marwood, R., McAllister, G., Myers, J., Curtis, N., Kulagowski, J. J., Leeson, P. D., Ridgill, M., Graham, M., Matheson, S., Rathbone, D., Watt, A. P., Bristow, L. J., Rupniak, N. M., - ¦ Ragan, C. I. ( 1997 ). Biological profile of L- 745,870, a selective antagonist with high affinity for the dopamine D4 receptor. Journal of Pharmacology and Experimental Therapeutics, 283 ( 2 ), 636 - 647.
dc.identifier.citedreferencePaxinos, G. W. C. ( 1997 ). The rat brain in stereotaxic coordinates. Academic Press.
dc.identifier.citedreferencePopoli, P., Pezzola, A., & de Carolis, A. S. ( 1994 ). Modulation of striatal adenosine A1 and A2 receptors induces rotational behaviour in response to dopaminergic stimulation in intact rats. European Journal of Pharmacology, 257 ( 1- 2 ), 21 - 25. https://doi.org/10.1016/0014- 2999(94)90689- 0
dc.identifier.citedreferenceQuerejeta, E., Delgado, A., Valdiosera, R., Erlij, D., & Aceves, J. ( 2001 ). Intrapallidal D2 dopamine receptors control globus pallidus neuron activity in the rat. Neuroscience Letters, 300 ( 2 ), 79 - 82. https://doi.org/10.1016/S0304- 3940(01)01550- 6
dc.identifier.citedreferenceRecillas- Morales, S., Sanchez- Vega, L., Ochoa- Sanchez, N., Caballero- Floran, I., Paz- Bermudez, F., Silva, I., Aceves, J., Erlij, D., & Floran, B. ( 2014 ). L- type Ca(2)(+) channel activity determines modulation of GABA release by dopamine in the substantia nigra reticulata and the globus pallidus of the rat. Neuroscience, 256, 292 - 301. https://doi.org/10.1016/j.neuroscience.2013.10.037
dc.identifier.citedreferenceRivera, A., Trias, S., Penafiel, A., Angel Narvaez, J., Diaz- Cabiale, Z., Moratalla, R., & de la Calle, A. ( 2003 ). Expression of D4 dopamine receptors in striatonigral and striatopallidal neurons in the rat striatum. Brain Research, 989 ( 1 ), 35 - 41. https://doi.org/10.1016/S0006- 8993(03)03328- 6
dc.identifier.citedreferenceRodríguez, M., Escartín- Pérez, E., Loya- López, S., Erlij, D., & Floran, B. ( 2016 ). Motor effects of nigral D4 receptors in normal and hemiparkinsonian rats. Soc Neursc Abstr 498.16.
dc.identifier.citedreferenceRodríguez- Sánchez, M., Escartín- Pérez, R. E., Leyva- Gómez, G., Avalos- Fuentes, J. A., Paz- Bermúdez, F. J., Loya- López, S. I., Aceves, J., Erlij, D., Cortés, H., & Florán, B. ( 2019 ). Blockade of intranigral and systemic D3 receptors stimulates motor activity in the rat promoting a reciprocal interaction among glutamate, dopamine, and GABA. Biomolecules, 9 ( 10 ), 511. https://doi.org/10.3390/biom9100511
dc.identifier.citedreferenceSánchez- Soto, M., Yano, H., Cai, N. S., Casadó- Anguera, V., Moreno, E., Casadó, V., & Ferré, S. ( 2019 ). Revisiting the functional role of dopamine D 4 receptor gene polymorphisms: Heteromerization- dependent gain of function of the D 4.7 receptor variant. Molecular Neurobiology, 56 ( 7 ), 4778 - 4785. https://doi.org/10.1007/s12035- 018- 1413- 1
dc.identifier.citedreferenceShin, R. M., Masuda, M., Miura, M., Sano, H., Shirasawa, T., Song, W. J., Kobayashi, K., & Aosaki, T. ( 2003 ). Dopamine D4 receptor- induced postsynaptic inhibition of GABAergic currents in mouse globus pallidus neurons. The Journal of Neuroscience, 23 ( 37 ), 11662 - 11672. https://doi.org/10.1523/JNEUROSCI.23- 37- 11662.2003
dc.identifier.citedreferenceShink, E., & Smith, Y. ( 1995 ). Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate- containing terminals in the squirrel monkey. The Journal of Comparative Neurology, 358 ( 1 ), 119 - 141. https://doi.org/10.1002/cne.903580108
dc.identifier.citedreferenceSmith, Y., Bevan, M. D., Shink, E., & Bolam, J. P. ( 1998 ). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience, 86 ( 2 ), 353 - 387.
dc.identifier.citedreferenceStanford, I. M., & Cooper, A. J. ( 1999 ). Presynaptic mu and delta opioid receptor modulation of GABAA IPSCs in the rat globus pallidus in vitro. The Journal of Neuroscience, 19 ( 12 ), 4796 - 4803.
dc.identifier.citedreferenceSurmeier, D. J., Song, W. J., & Yan, Z. ( 1996 ). Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. The Journal of Neuroscience, 16 ( 20 ), 6579 - 6591. https://doi.org/10.1523/JNEUROSCI.16- 20- 06579.1996
dc.identifier.citedreferenceVallone, D., Picetti, R., & Borrelli, E. ( 2000 ). Structure and function of dopamine receptors. Neuroscience and Biobehavioral Reviews, 24 ( 1 ), 125 - 132. https://doi.org/10.1016/S0149- 7634(99)00063- 9
dc.identifier.citedreferenceVangveravong, S., Taylor, M., Xu, J., Cui, J., Calvin, W., Babic, S., Luedtke, R. R., & Mach, R. H. ( 2010 ). Synthesis and characterization of selective dopamine D2 receptor antagonists. 2. Azaindole, benzofuran, and benzothiophene analogs of L- 741,626. Bioorganic & Medicinal Chemistry, 18 ( 14 ), 5291 - 5300. https://doi.org/10.1016/j.bmc.2010.05.052
dc.identifier.citedreferenceWest, M. O., Peoples, L. L., Michael, A. J., Chapin, J. K., & Woodward, D. J. ( 1997 ). Low- dose amphetamine elevates movement- related firing of rat striatal neurons. Brain Research, 745 ( 1- 2 ), 331 - 335. https://doi.org/10.1016/S0006- 8993(96)01215- 2
dc.identifier.citedreferenceZhang, K., Tarazi, F. I., & Baldessarini, R. J. ( 2001 ). Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6- hydroxydopamine lesions in rats. Neuropsychopharmacology, 25 ( 5 ), 624 - 632. https://doi.org/10.1016/S0893- 133X(01)00262- 7
dc.identifier.citedreferenceOgura, M., & Kita, H. ( 2000 ). Dynorphin exerts both postsynaptic and presynaptic effects in the Globus pallidus of the rat. Journal of Neurophysiology, 83 ( 6 ), 3366 - 3376.
dc.identifier.citedreferenceAbdi, A., Mallet, N., Mohamed, F. Y., Sharott, A., Dodson, P. D., Nakamura, K. C., Suri, S., Avery, S. V., Larvin, J. T., Garas, F. N., Garas, S. N., Vinciati, F., Morin, S., Bezard, E., Baufreton, J., & Magill, P. J. ( 2015 ). Prototypic and arkypallidal neurons in the dopamine- intact external globus pallidus. The Journal of Neuroscience, 35 ( 17 ), 6667 - 6688. https://doi.org/10.1523/JNEUROSCI.4662- 14.2015
dc.identifier.citedreferenceAceves, J. J., Rueda- Orozco, P. E., Hernandez- Martinez, R., Galarraga, E., & Bargas, J. ( 2011 ). Bidirectional plasticity in striatonigral synapses: A switch to balance direct and indirect basal ganglia pathways. Learning & Memory, 18 ( 12 ), 764 - 773. https://doi.org/10.1101/lm.023432.111
dc.identifier.citedreferenceAcosta- Garcia, J., Hernandez- Chan, N., Paz- Bermudez, F., Sierra, A., Erlij, D., Aceves, J., & Floran, B. ( 2009 ). D4 and D1 dopamine receptors modulate [3H] GABA release in the substantia nigra pars reticulata of the rat. Neuropharmacology, 57 ( 7- 8 ), 725 - 730. https://doi.org/10.1016/j.neuropharm.2009.08.010
dc.identifier.citedreferenceAkopian, G., Barry, J., Cepeda, C., & Levine, M. S. ( 2016 ). Altered membrane properties and firing patterns of external globus pallidus neurons in the R6/2 mouse model of Huntington’s disease. Journal of Neuroscience Research, 94 ( 12 ), 1400 - 1410.
dc.identifier.citedreferenceAlbin, R. L., Young, A. B., & Penney, J. B. ( 1989 ). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12 ( 10 ), 366 - 375. https://doi.org/10.1016/0166- 2236(89)90074- X
dc.identifier.citedreferenceAriano, M. A., Wang, J., Noblett, K. L., Larson, E. R., & Sibley, D. R. ( 1997 ). Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti- receptor antisera. Brain Research, 752 ( 1- 2 ), 26 - 34. https://doi.org/10.1016/S0006- 8993(96)01422- 9
dc.identifier.citedreferenceAvila, G., Picazo, O., Chuc- Meza, E., & García- Ramirez, M. ( 2020 ). Reduction of dopaminergic transmission in the globus pallidus increases anxiety- like behavior without altering motor activity. Behavioural Brain Research, 386, 112589.
dc.identifier.citedreferenceAzad, C. E. M., Mariscano, G., Lutz, B., Zieglgansberger, W., & Rammes, G. ( 2014 ). Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABA synaptic transmission in the lateral amygdala of the mouse. Learning & Memory, 10, 116 - 128.
dc.identifier.citedreferenceBarrientos, R., Alatorre, A., Martinez- Escudero, J., Garcia- Ramirez, M., Oviedo- Chavez, A., Delgado, A., & Querejeta, E. ( 2019 ). Effects of local activation and blockade of dopamine D4 receptors in the spiking activity of the reticular thalamic nucleus in normal and in ipsilateral dopamine- depleted rats. Brain Research, 1712, 34 - 46. https://doi.org/10.1016/j.brainres.2019.01.042
dc.identifier.citedreferenceBerger, M. A., Defagot, M. C., Villar, M. J., & Antonelli, M. C. ( 2001 ). D4 dopamine and metabotropic glutamate receptors in cerebral cortex and striatum in rat brain. Neurochemical Research, 26 ( 4 ), 345 - 352.
dc.identifier.citedreferenceBevan, M. D., Booth, P. A., Eaton, S. A., & Bolam, J. P. ( 1998 ). Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. The Journal of Neuroscience, 18 ( 22 ), 9438 - 9452. https://doi.org/10.1523/JNEUROSCI.18- 22- 09438.1998
dc.identifier.citedreferenceBriones- Lizardi, L. J., Cortes, H., Avalos- Fuentes, J. A., Paz- Bermudez, F. J., Aceves, J., Erlij, D., & Floran, B. ( 2019 ). Presynaptic control of [(3)H]- glutamate release by dopamine receptor subtypes in the rat substantia nigra. Central role of D1 and D3 receptors. Neuroscience, 406, 563 - 579.
dc.identifier.citedreferenceBristow, L. J., Collinson, N., Cook, G. P., Curtis, N., Freedman, S. B., Kulagowski, J. J., Leeson, P. D., Patel, S., Ragan, C. I., Ridgill, M., Saywell, K. L., & Tricklebank, M. D. ( 1997 ). L- 745,870, a subtype selective dopamine D4 receptor antagonist, does not exhibit a neuroleptic- like profile in rodent behavioral tests. Journal of Pharmacology and Experimental Therapeutics, 283 ( 3 ), 1256 - 1263.
dc.identifier.citedreferenceBugaysen, J., Bar- Gad, I., & Korngreen, A. ( 2013 ). Continuous modulation of action potential firing by a unitary GABAergic connection in the globus pallidus in vitro. The Journal of Neuroscience, 33 ( 31 ), 12805 - 12809. https://doi.org/10.1523/JNEUROSCI.1970- 13.2013
dc.identifier.citedreferenceCaballero- Floran, R. N., Conde- Rojas, I., Oviedo Chavez, A., Cortes- Calleja, H., Lopez- Santiago, L. F., Isom, L. L., Aceves, J., Erlij, D., & Floran, B. ( 2016 ). Cannabinoid- induced depression of synaptic transmission is switched to stimulation when dopaminergic tone is increased in the globus pallidus of the rodent. Neuropharmacology, 110 ( Pt A ), 407 - 418. https://doi.org/10.1016/j.neuropharm.2016.08.002
dc.identifier.citedreferenceChazalon, M., Paredes- Rodriguez, E., Morin, S., Martinez, A., Cristóvão- Ferreira, S., Vaz, S., Sebastiao, A., Panatier, A., Boué- Grabot, E., Miguelez, C., & Baufreton, J. ( 2018 ). GAT- 3 dysfunction generates tonic inhibition in external globus pallidus neurons in parkinsonian rodents. Cell Reports, 23 ( 6 ), 1678 - 1690. https://doi.org/10.1016/j.celrep.2018.04.014
dc.identifier.citedreferenceClifford, J. J., & Waddington, J. L. ( 2000 ). Topographically based search for an - Ethogram- among a series of novel D(4) dopamine receptor agonists and antagonists. Neuropsychopharmacology, 22 ( 5 ), 538 - 544. https://doi.org/10.1016/S0893- 133X(99)00141- 4
dc.identifier.citedreferenceConnelly, W. M., Schulz, J. M., Lees, G., & Reynolds, J. N. ( 2010 ). Differential short- term plasticity at convergent inhibitory synapses to the substantia nigra pars reticulata. The Journal of Neuroscience, 30 ( 44 ), 14854 - 14861. https://doi.org/10.1523/JNEUROSCI.3895- 10.2010
dc.identifier.citedreferenceCooper, A. J., & Stanford, I. M. ( 2000 ). Electrophysiological and morphological characteristics of three subtypes of rat globus pallidus neurone in vitro. The Journal of Physiology, 527 ( Pt 2 ), 291 - 304.
dc.identifier.citedreferenceCooper, A. J., & Stanford, I. M. ( 2001 ). Dopamine D2 receptor mediated presynaptic inhibition of striatopallidal GABA(A) IPSCs in vitro. Neuropharmacology, 41 ( 1 ), 62 - 71. https://doi.org/10.1016/S0028- 3908(01)00038- 7
dc.identifier.citedreferenceCrandall, S. R., Govindaiah, G., & Cox, C. L. ( 2010 ). Low- threshold Ca 2+ current amplifies distal dendritic signaling in thalamic reticular neurons. The Journal of Neuroscience, 30 ( 46 ), 15419 - 15429. https://doi.org/10.1523/JNEUROSCI.3636- 10.2010
dc.identifier.citedreferenceCruz- Trujillo, R., Avalos- Fuentes, A., Rangel- Barajas, C., Paz- Bermudez, F., Sierra, A., Escartin- Perez, E., Aceves, J., Erlij, D., & Floran, B. ( 2013 ). D3 dopamine receptors interact with dopamine D1 but not D4 receptors in the GABAergic terminals of the SNr of the rat. Neuropharmacology, 67, 370 - 378. https://doi.org/10.1016/j.neuropharm.2012.11.032
dc.identifier.citedreferenceCui, G., Jun, S. B., Jin, X., Luo, G., Pham, M. D., Lovinger, D. M., Vogel, S. S., & Costa, R. M. ( 2014 ). Deep brain optical measurements of cell type- specific neural activity in behaving mice. Nature Protocols, 9 ( 6 ), 1213 - 1228. https://doi.org/10.1038/nprot.2014.080
dc.identifier.citedreferenceDefagot, M. C., Malchiodi, E. L., Villar, M. J., & Antonelli, M. C. ( 1997 ). Distribution of D4 dopamine receptor in rat brain with sequence- specific antibodies. Brain Research. Molecular Brain Research, 45 ( 1 ), 1 - 12. https://doi.org/10.1016/S0169- 328X(96)00235- 5
dc.identifier.citedreferenceEngler, B., Freiman, I., Urbanski, M., & Szabo, B. ( 2006 ). Effects of exogenous and endogenous cannabinoids on GABAergic neurotransmission between the Caudate- Putamen and the Globus Pallidus of the mouse. Journal of Pharmacology and Experimental Therapeutics, 316, 608 - 617.
dc.identifier.citedreferenceErlij, D., Acosta- Garcia, J., Rojas- Marquez, M., Gonzalez- Hernandez, B., Escartin- Perez, E., Aceves, J., & Floran, B. ( 2012 ). Dopamine D4 receptor stimulation in GABAergic projections of the globus pallidus to the reticular thalamic nucleus and the substantia nigra reticulata of the rat decreases locomotor activity. Neuropharmacology, 62 ( 2 ), 1111 - 1118. https://doi.org/10.1016/j.neuropharm.2011.11.001
dc.identifier.citedreferenceFalls, W. M., Park, M. R., & Kitai, S. T. ( 1983 ). An intracellular HRP study of the rat globus pallidus. II. Fine structural characteristics and synaptic connections of medially located large GP neurons. The Journal of Comparative Neurology, 221 ( 2 ), 229 - 245. https://doi.org/10.1002/cne.902210210
dc.identifier.citedreferenceFedchyshyn, M. J., & Wang, L. Y. ( 2005 ). Developmental transformation of the release modality at the calyx of Held synapse. The Journal of Neuroscience, 25 ( 16 ), 4131 - 4140. https://doi.org/10.1523/JNEUROSCI.0350- 05.2005
dc.identifier.citedreferenceFloran, B., Aceves, J., Sierra, A., & Martinez- Fong, D. ( 1990 ). Activation of D1 dopamine receptors stimulates the release of GABA in the basal ganglia of the rat. Neuroscience Letters, 116 ( 1- 2 ), 136 - 140. https://doi.org/10.1016/0304- 3940(90)90399- T
dc.identifier.citedreferenceFlorán, B., Barajas, C., Florán, L., Erlij, D., & Aceves, J. ( 2002 ). Adenosine A1 receptors control dopamine D1- dependent [3H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience, 115 ( 3 ), 743 - 751. https://doi.org/10.1016/S0306- 4522(02)00479- 7
dc.identifier.citedreferenceFloran, B., Floran, L., Erlij, D., & Aceves, J. ( 2004a ). Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus. Neuropharmacology, 46 ( 4 ), 497 - 503. https://doi.org/10.1016/j.neuropharm.2003.10.004
dc.identifier.citedreferenceFloran, B., Floran, L., Erlij, D., & Aceves, J. ( 2004b ). Dopamine D4 receptors inhibit depolarization- induced [3H]GABA release in the rat subthalamic nucleus. European Journal of Pharmacology, 498 ( 1- 3 ), 97 - 102. https://doi.org/10.1016/j.ejphar.2004.07.078
dc.identifier.citedreferenceFloran, B., Floran, L., Sierra, A., & Aceves, J. ( 1997 ). D2 receptor- mediated inhibition of GABA release by endogenous dopamine in the rat globus pallidus. Neuroscience Letters, 237 ( 1 ), 1 - 4. https://doi.org/10.1016/S0304- 3940(97)00784- 2
dc.identifier.citedreferenceGalvan, A., Floran, B., Erlij, D., & Aceves, J. ( 2001 ). Intrapallidal dopamine restores motor deficits induced by 6- hydroxydopamine in the rat. J Neural Transm (Vienna), 108 ( 2 ), 153 - 166. https://doi.org/10.1007/s007020170085.
dc.identifier.citedreferenceGandia, J. A., De Las, H. S., Garcia, M., & Gimenez- Amaya, J. M. ( 1993 ). Afferent projections to the reticular thalamic nucleus from the globus pallidus and the substantia nigra in the rat. Brain Research Bulletin, 32 ( 4 ), 351 - 358. https://doi.org/10.1016/0361- 9230(93)90199- L
dc.identifier.citedreferenceGasca- Martinez, D., Hernandez, A., Sierra, A., Valdiosera, R., Anaya- Martinez, V., Floran, B., Erlij, D., & Aceves, J. ( 2010 ). Dopamine inhibits GABA transmission from the globus pallidus to the thalamic reticular nucleus via presynaptic D4 receptors. Neuroscience, 169 ( 4 ), 1672 - 1681. https://doi.org/10.1016/j.neuroscience.2010.05.048
dc.identifier.citedreferenceGlase, S. A., Akunne, H. C., Georgic, L. M., Heffner, T. G., MacKenzie, R. G., Manley, P. J., Pugsley, T. A., & Wise, L. D. ( 1997 ). Substituted [(4- phenylpiperazinyl)- methyl]benzamides: Selective dopamine D4 agonists. Journal of Medicinal Chemistry, 40 ( 12 ), 1771 - 1772.
dc.identifier.citedreferenceGonzalez, S., Rangel- Barajas, C., Peper, M., Lorenzo, R., Moreno, E., Ciruela, F., Borycz, J., Ortiz, J., Lluis, C., Franco, R., McCormick, P. J., Volkow, N. D., Rubinstein, M., Floran, B., & Ferre, S. ( 2012 ). Dopamine D4 receptor, but not the ADHD- associated D4.7 variant, forms functional heteromers with the dopamine D2S receptor in the brain. Molecular Psychiatry, 17 ( 6 ), 650 - 662. https://doi.org/10.1038/mp.2011.93
dc.identifier.citedreferenceGovindaiah, G., Wang, T., Gillette, M. U., Crandall, S. R., & Cox, C. L. ( 2010 ). Regulation of inhibitory synapses by presynaptic D(4) dopamine receptors in thalamus. Journal of Neurophysiology, 104 ( 5 ), 2757 - 2765.
dc.identifier.citedreferenceGuzman, J. N., Hernandez, A., Galarraga, E., Tapia, D., Laville, A., Vergara, R., Aceves, J., & Bargas, J. ( 2003 ). Dopaminergic modulation of axon collaterals interconnecting spiny neurons of the rat striatum. The Journal of Neuroscience, 23 ( 26 ), 8931 - 8940. https://doi.org/10.1523/JNEUROSCI.23- 26- 08931.2003
dc.identifier.citedreferenceHazrati, L. N., & Parent, A. ( 1991 ). Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey. Brain Research, 550 ( 1 ), 142 - 146. https://doi.org/10.1016/0006- 8993(91)90418- U
dc.identifier.citedreferenceHegeman, D. J., Hong, E. S., Hernandez, V. M., & Chan, C. S. ( 2016 ). The external globus pallidus: Progress and perspectives. The European Journal of Neuroscience, 43 ( 10 ), 1239 - 1265. https://doi.org/10.1111/ejn.13196
dc.identifier.citedreferenceHernandez, A., Ibanez- Sandoval, O., Sierra, A., Valdiosera, R., Tapia, D., Anaya, V., Galarraga, E., Bargas, J., & Aceves, J. ( 2006 ). Control of the subthalamic innervation of the rat globus pallidus by D2/3 and D4 dopamine receptors. Journal of Neurophysiology, 96 ( 6 ), 2877 - 2888.
dc.identifier.citedreferenceHernandez, V. M., Hegeman, D. J., Cui, Q., Kelver, D. A., Fiske, M. P., Glajch, K. E., Pitt, J. E., Huang, T. Y., Justice, N. J., & Chan, C. S. ( 2015 ). Parvalbumin+ neurons and Npas1+ neurons are distinct neuron classes in the mouse external globus pallidus. The Journal of Neuroscience, 35 ( 34 ), 11830 - 11847. https://doi.org/10.1523/JNEUROSCI.4672- 14.2015
dc.identifier.citedreferenceHernandez- Lopez, S., Tkatch, T., Perez- Garci, E., Galarraga, E., Bargas, J., Hamm, H., & Surmeier, D. J. ( 2000 ). D2 dopamine receptors in striatal medium spiny neurons reduce L- type Ca 2+ currents and excitability via a novel PLC[beta]1- IP3- calcineurin- signaling cascade. The Journal of Neuroscience, 20 ( 24 ), 8987 - 8995.
dc.identifier.citedreferenceJiang, H., Jackson- Lewis, V., Muthane, U., Dollison, A., Ferreira, M., Espinosa, A., Parsons, B., & Przedborski, S. ( 1993 ). Adenosine receptor antagonists potentiate dopamine receptor agonist- induced rotational behavior in 6- hydroxydopamine- lesioned rats. Brain Research, 613 ( 2 ), 347 - 351. https://doi.org/10.1016/0006- 8993(93)90925- D
dc.identifier.citedreferenceJijon- Lorenzo, R., Caballero- Floran, I. H., Recillas- Morales, S., Cortes, H., Avalos- Fuentes, J. A., Paz- Bermudez, F. J., Erlij, D., & Floran, B. ( 2018 ). Presynaptic dopamine D2 receptors modulate [(3)H]GABA release at striatopallidal terminals via activation of PLC- >IP3- >calcineurin and inhibition of AC- >cAMP- >PKA signaling cascades. Neuroscience, 372, 74 - 86.
dc.identifier.citedreferenceKawaguchi, Y., Wilson, C. J., & Emson, P. C. ( 1990 ). Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. The Journal of Neuroscience, 10 ( 10 ), 3421 - 3438. https://doi.org/10.1523/JNEUROSCI.10- 10- 03421.1990
dc.identifier.citedreferenceKayahara, T., & Nakano, K. ( 1998 ). The globus pallidus sends axons to the thalamic reticular nucleus neurons projecting to the centromedian nucleus of the thalamus: A light and electron microscope study in the cat. Brain Research Bulletin, 45 ( 6 ), 623 - 630. https://doi.org/10.1016/S0361- 9230(97)00464- 4
dc.identifier.citedreferenceKelsey, J. E., Langelier, N. A., Oriel, B. S., & Reedy, C. ( 2009 ). The effects of systemic, intrastriatal, and intrapallidal injections of caffeine and systemic injections of A2A and A1 antagonists on forepaw stepping in the unilateral 6- OHDA- lesioned rat. Psychopharmacology (Berl), 201 ( 4 ), 529 - 539. https://doi.org/10.1007/s00213- 008- 1319- 0
dc.identifier.citedreferenceKita, H. ( 2007 ). Globus pallidus external segment. Progress in Brain Research, 160, 111 - 133.
dc.identifier.citedreferenceKita, H., & Kita, T. ( 2001 ). Number, origins, and chemical types of rat pallidostriatal projection neurons. The Journal of Comparative Neurology, 437 ( 4 ), 438 - 448. https://doi.org/10.1002/cne.1294
dc.identifier.citedreferenceKita, H., & Kitai, S. T. ( 1991 ). Intracellular study of rat globus pallidus neurons: Membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Research, 564 ( 2 ), 296 - 305. https://doi.org/10.1016/0006- 8993(91)91466- E
dc.identifier.citedreferenceKita, H., & Kitai, S. T. ( 1994 ). The morphology of globus pallidus projection neurons in the rat: An intracellular staining study. Brain Research, 636 ( 2 ), 308 - 319. https://doi.org/10.1016/0006- 8993(94)91030- 8
dc.identifier.citedreferenceKita, H., Tokuno, H., & Nambu, A. ( 1999 ). Monkey globus pallidus external segment neurons projecting to the neostriatum. NeuroReport, 10 ( 7 ), 1467 - 1472. https://doi.org/10.1097/00001756- 199905140- 00014
dc.identifier.citedreferenceKodirov, S. A., Jasiewicz, J., Amirmahani, P., Psyrakis, D., Bonni, K., Wehrmeister, M., & Lutz, B. ( 2010 ). Endogenous cannabinoids trigger the depolarization- induced suppression of excitation in the lateral amygdala. Learning & Memory, 17 ( 1 ), 43 - 49. https://doi.org/10.1101/lm.1663410
dc.identifier.citedreferenceOkoyama, S., Nakamura, Y., Moriizumi, T., & Kitao, Y. ( 1987 ). Electron microscopic analysis of the synaptic organization of the globus pallidus in the cat. The Journal of Comparative Neurology, 265 ( 3 ), 323 - 331.
dc.identifier.citedreferenceKulagowski, J. J., Broughton, H. B., Curtis, N. R., Mawer, I. M., Ridgill, M. P., Baker, R., Emms, F., Freedman, S. B., Marwood, R., Patel, S., Patel, S., Ragan, C. I., & Leeson, P. D. ( 1996 ). 3- ((4- (4- Chlorophenyl)piperazin- 1- yl)- methyl)- 1H- pyrrolo- 2,3- b- pyridine: An antagonist with high affinity and selectivity for the human dopamine D4 receptor. Journal of Medicinal Chemistry, 39 ( 10 ), 1941 - 1942.
dc.identifier.citedreferencele Boulch, N. L., Truong- Ngoc, N. A., Gauchy, C., & Besson, M. J. ( 1991 ). In vivo release of newly synthesized [3H]GABA in the substantia nigra of the rat: Relative contribution of GABA striato- pallido- nigral afferents and nigral GABA neurons. Brain Research, 559 ( 2 ), 200 - 210. https://doi.org/10.1016/0006- 8993(91)90003- E
dc.identifier.citedreferenceLlano, I., Leresche, N., & Marty, A. ( 1991 ). Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron, 6 ( 4 ), 565 - 574. https://doi.org/10.1016/0896- 6273(91)90059- 9
dc.identifier.citedreferenceMallet, N., Micklem, B. R., Henny, P., Brown, M. T., Williams, C., Bolam, J. P., Nakamura, K. C., & Magill, P. J. ( 2012 ). Dichotomous organization of the external globus pallidus. Neuron, 74 ( 6 ), 1075 - 1086. https://doi.org/10.1016/j.neuron.2012.04.027
dc.identifier.citedreferenceMarazziti, D., Baroni, S., Masala, I., Giannaccini, G., Betti, L., Palego, L., Catena Dell’Osso, M., Consoli, G., Castagna, M., & Lucacchini, A. ( 2009 ). [(3)H]- YM- 09151- 2 binding sites in human brain postmortem. Neurochemistry International, 55 ( 7 ), 643 - 647. https://doi.org/10.1016/j.neuint.2009.06.005
dc.identifier.citedreferenceMatsui, T., & Kita, H. ( 2003 ). Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience, 122 ( 3 ), 727 - 737. https://doi.org/10.1016/j.neuroscience.2003.08.032
dc.identifier.citedreferenceMauger, C., Sivan, B., Brockhaus, M., Fuchs, S., Civelli, O., & Monsma, F. Jr ( 1998 ). Development and characterization of antibodies directed against the mouse D4 dopamine receptor. The European Journal of Neuroscience, 10 ( 2 ), 529 - 537. https://doi.org/10.1046/j.1460- 9568.1998.00056.x
dc.identifier.citedreferenceMcCall, R. B., Lookingland, K. J., Bedard, P. J., & Huff, R. M. ( 2005 ). Sumanirole, a highly dopamine D2- selective receptor agonist: In vitro and in vivo pharmacological characterization and efficacy in animal models of Parkinson’s disease. Journal of Pharmacology and Experimental Therapeutics, 314 ( 3 ), 1248 - 1256.
dc.identifier.citedreferenceMiguelez, C., Morin, S., Martinez, A., Goillandeau, M., Bezard, E., Bioulac, B., & Baufreton, J. ( 2012 ). Altered pallido- pallidal synaptic transmission leads to aberrant firing of globus pallidus neurons in a rat model of Parkinson’s disease. The Journal of Physiology, 590 ( 22 ), 5861 - 5875. https://doi.org/10.1113/jphysiol.2012.241331
dc.identifier.citedreferenceMillan, M. J., Newman- Tancredi, A., Brocco, M., Gobert, A., Lejeune, F., Audinot, V., Rivet, J. M., Schreiber, R., Dekeyne, A., Spedding, M., Nicolas, J. P., & Peglion, J. L. ( 1998 ). S 18126 ([2- [4- (2,3- dihydrobenzo[1,4]dioxin- 6- yl)piperazin- 1- yl methyl]indan- 2- yl]), a potent, selective and competitive antagonist at dopamine D4 receptors: An in vitro and in vivo comparison with L 745,870 (3- (4- [4- chlorophenyl]piperazin- 1- yl)methyl- 1H- pyrrolo[2, 3b]pyridine) and raclopride. Journal of Pharmacology and Experimental Therapeutics, 287 ( 1 ), 167 - 186.
dc.identifier.citedreferenceMiyazaki, I., Asanuma, M., Diaz- Corrales, F. J., Miyoshi, K., & Ogawa, N. ( 2004 ). Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Research, 1029 ( 1 ), 120 - 123. https://doi.org/10.1016/j.brainres.2004.09.014
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.