Show simple item record

A New Powertrain Architecture: From Electromagnetic-Structural Dynamics to Platooning

dc.contributor.authorYi, Chenyu
dc.date.accessioned2021-02-04T16:39:30Z
dc.date.available2021-02-04T16:39:30Z
dc.date.issued2020
dc.date.submitted2020
dc.identifier.urihttps://hdl.handle.net/2027.42/166142
dc.description.abstractElectrification and vehicle-to-vehicle connectivity have become two of the major areas of vehicle development in recent years. Electrified vehicles show significant advantages because of their high performance in fuel economy and low emissions compared to conventional vehicles. Although hybrid electric vehicle (HEV) development has resulted in a variety of powertrain architectures, novel high-performance powertrain solutions with fewer components and low cost remain an important need. In addition, common HEV configurations use small internal combustion engines, which can suffer from high torque fluctuations detrimental for NVH performance and safety. Advanced powertrains that absorb these fluctuations efficiently are needed. This thesis presents a novel HEV powertrain architecture without any planetary gears or clutches. Using physics-based component model, a proof-of-concept powertrain model is implemented and demonstrated ability to remove over 99.5% torque fluctuation and fulfill vehicle driving demands. A comprehensive design and control optimization for the novel powertrain is performed. A single utility function is designed by combining multiple objectives, and is tuned using the Pareto front of the novel powertrain performance to obtain different optimal powertrain designs. Optimal novel powertrain designs show comparable performance with optimal designs of commercially available power-split benchmark powertrains. Torque fluctuations in HEVs may result in electromagnetic-structural (EMS) phenomena within the electric machines of the powertrain. Periodic forces generated by permanent magnets or windings and other disturbances to the EM device can lead to excitation of specific structural resonances due to EMS coupling. Existing EMS models are usually 2D and do not capture the EMS coupling. Thus, a model that accurately and efficiently captures EMS phenomena is required. To capture the EMS phenomena, displacement-dependent EM forces are introduced in the modal space to the structural dynamics of electric machines. Both linear and nonlinear approximations of EM forces are calculated using high-fidelity FEA models, forming a reduced-order model (ROM) with EMS coupling, namely the EMS ROM. The dynamics of the EMS ROM is similar to a damped dynamical system governed by Mathieu's equation, which exhibits parametric excitation. The EMS ROM is used to compute the stability transition threshold for the parametric excitation. Parametric resonance peaks are revealed in the responses from an unstable device with EMS. In addition, a frequency shift of the primary resonance peak caused by (nonlinear) EM force harmonics is detected. Time-domain analyses using the high-fidelity FEA model confirm the EMS phenomena and accuracy of the EMS ROM. Multiple vehicles, each with an advanced powertrain can be used in platoons to enhance fuel economy, road capacity, and safety compared to a single vehicle. Studies that focus on platooning usually do not focus on task-based longitudinal planning and do not capture detailed powertrain operations, which impact the control and energy consumption of the overall platoon. In this thesis, multiple vehicles, each equipped with the novel powertrain, are investigated when they form a platoon and drive on a specified path. The drive schedule and vehicle controllers are optimized to minimize the total energy consumption of the platoon. Energy optimization requires an integrated vehicle-following model and a high-fidelity powertrain model. In addition, component-level, vehicle-level, and platoon-level constraints are applied. Parametric studies are performed for both homogeneous and heterogeneous platoons. Optimization is shown to effectively reduce the maximum headway error by an order of magnitude and enhance energy saving of 17% to 37%.
dc.language.isoen_US
dc.subjectelectrified powertrain
dc.subjectconnected vehicles
dc.subjectvehicle control
dc.subjectpowertrain control
dc.subjectlongitudinal planning
dc.subjectmulti-physics reduced-order vibration model
dc.titleA New Powertrain Architecture: From Electromagnetic-Structural Dynamics to Platooning
dc.typeThesis
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineering
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberEpureanu, Bogdan
dc.contributor.committeememberHofmann, Heath
dc.contributor.committeememberCastanier, Matthew
dc.contributor.committeememberHulbert, Gregory M
dc.contributor.committeememberPopa, Bogdan Ioan
dc.contributor.committeememberRizzo, Denise
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166142/1/albertyi_1.pdf
dc.identifier.doihttps://dx.doi.org/10.7302/65
dc.identifier.orcid0000-0002-5644-7579
dc.identifier.name-orcidYi, Chenyu; 0000-0002-5644-7579en_US
dc.working.doi10.7302/65en
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.