Show simple item record

Iridium‐Catalysed C−H Borylation of Heteroarenes: Balancing Steric and Electronic Regiocontrol

dc.contributor.authorWright, Jay S.
dc.contributor.authorScott, Peter J. H.
dc.contributor.authorSteel, Patrick G.
dc.date.accessioned2021-02-04T21:48:43Z
dc.date.available2022-03-04 16:48:41en
dc.date.available2021-02-04T21:48:43Z
dc.date.issued2021-02-08
dc.identifier.citationWright, Jay S.; Scott, Peter J. H.; Steel, Patrick G. (2021). "Iridium‐Catalysed C−H Borylation of Heteroarenes: Balancing Steric and Electronic Regiocontrol." Angewandte Chemie International Edition 60(6): 2796-2821.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/166161
dc.description.abstractThe iridium‐catalysed borylation of aromatic C−H bonds has become the preferred method for the synthesis of aromatic organoboron compounds. The reaction is highly efficient, tolerant of a broad range of substituents and can be applied to both carbocyclic and heterocyclic substrates. The regioselectivity of C−H activation is dominated by steric considerations and there have been considerable efforts to develop more selective processes for less constrained substrates. However, most of these have focused on benzenoid‐type substrates and in contrast, heteroarenes remain much desired but more challenging substrates with the position and/or nature of the heteroatom(s) significantly affecting reactivity and regioselectivity. This review will survey the borylation of heteroarenes, focusing on the influence of steric and electronic effects on regiochemical outcome and, by linking to current mechanistic understandings, will provide insights to what is currently possible and where further developments are required.Which C−H bond? The iridium‐catalysed C−H borylation reaction is a powerful method for the preparation of aromatic organoboronate esters. Sterically regulated regioselectivity dominates carbocyclic aromatic C−H borylation. In contrast, heterocyclic aromatics display a much greater influence from electronic effects. In this review, examples of heterocyclic C−H borylation are surveyed, and the origins of heterocyclic C−H borylation regioselectivities discussed.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherborylation
dc.subject.otherregioselectivity
dc.subject.otheriridium
dc.subject.otherheteroarenes
dc.subject.othercatalysis
dc.titleIridium‐Catalysed C−H Borylation of Heteroarenes: Balancing Steric and Electronic Regiocontrol
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166161/1/anie202001520_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166161/2/anie202001520.pdf
dc.identifier.doi10.1002/anie.202001520
dc.identifier.doihttps://dx.doi.org/10.7302/84
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceL. Liu, G. Wang, J. Jiao, P. Li, Org. Lett. 2017, 19, 6132 – 6135.
dc.identifier.citedreferenceJ. Liyu, J. Sperry, Tetrahedron Lett. 2017, 58, 1699 – 1701.
dc.identifier.citedreferenceF.-M. Meyer, S. Liras, A. Guzman-Perez, C. Perreault, J. Bian, K. James, Org. Lett. 2010, 12, 3870 – 3873.
dc.identifier.citedreferenceA. S. Eastabrook, J. Sperry, Aust. J. Chem. 2015, 68, 1810 – 1814.
dc.identifier.citedreferenceG. H. M. Davies, M. Jouffroy, F. Sherafat, B. Saeednia, C. Howshall, G. A. Molander, J. Org. Chem. 2017, 82, 8072 – 8084.
dc.identifier.citedreferenceK. Mertins, A. Zapf, M. Beller, J. Mol. Catal. A Chem. 2004, 207, 21 – 25.
dc.identifier.citedreferenceC. C. C. J. Seechurn, V. Sivakumar, D. Satoskar, T. J. Colacot, Organometallics 2014, 33, 3514 – 3522.
dc.identifier.citedreferenceM. R. Smith   III, R. Bisht, C. Haldar, G. Pandey, J. E. Dannatt, B. Ghaffari, R. E. Maleczka,  Jr., B. Chattopadhyay, ACS Catal. 2018, 8, 6216 – 6223.
dc.identifier.citedreferenceY. Feng, D. Holte, J. Zoller, S. Umemiya, L. R. Simke, P. S. Baran, J. Am. Chem. Soc. 2015, 137, 10160 – 10163.
dc.identifier.citedreferenceR. Bisht, M. E. Hoque, B. Chattopadhyay, Angew. Chem. Int. Ed. 2018, 57, 15762 – 15766; Angew. Chem. 2018, 130, 15988 – 15992.
dc.identifier.citedreferenceC. R. d. S. Bertallo, T. R. Arroio, M. F. Z. J. Toledo, S. A. Sadler, R. Vessecchi, P. G. Steel, G. C. Clososki, Eur. J. Org. Chem. 2019, 5205 – 5213.
dc.identifier.citedreferenceI. A. I. Mkhalid, D. N. Coventry, D. Albesa-Jove, A. S. Batsanov, J. A. K. Howard, R. N. Perutz, T. B. Marder, Angew. Chem. Int. Ed. 2006, 45, 489 – 491; Angew. Chem. 2006, 118, 503 – 505. A recent report has shown that during borylations requiring elevated temperatures and longer reaction times, dissociation of dtbpy can occur as observed by borylated adducts being detected see ref. [53].
dc.identifier.citedreferenceT. Tagata, M. Nishida, Adv. Synth. Catal. 2004, 346, 1655 – 1660.
dc.identifier.citedreferenceA. Ros, B. Estepa, R. López-Rodríguez, E. Álvarez, R. Fernández, J. M. Lassaletta, Angew. Chem. Int. Ed. 2011, 50, 11724 – 11728; Angew. Chem. 2011, 123, 11928 – 11932.
dc.identifier.citedreferenceG. Wang, L. Liu, H. Wang, Y.-S. Ding, J. Zhou, S. Mao, P. Li, J. Am. Chem. Soc. 2017, 139, 49.
dc.identifier.citedreferenceY. Yang, Q. Gao, S. Xu, Adv. Synth. Catal. 2019, 361, 858 – 862.
dc.identifier.citedreferenceM. R. Smith   III, R. E. Maleczka,  Jr., A. K. Venkata, E. Onyeozili, Process for Producing Oxazole, Imidazole, Pyrazole Boryl Compounds, US Pat. 7,709,654B2, 2008.
dc.identifier.citedreferenceJ. S. Wright, P. G. Steel, unpublished results.
dc.identifier.citedreferenceS. A. Sadler, A. C. Hones, B. Roberts, D. Blakemore, T. B. Marder, P. G. Steel, J. Org. Chem. 2015, 80, 5308 – 5314.
dc.identifier.citedreferenceB. A. Egan, P. M. Burton, RSC Adv. 2014, 4, 27726.
dc.identifier.citedreferenceA. W. Baggett, M. Vasiliu, B. Li, D. A. Dixon, S. Y. Liu, J. Am. Chem. Soc. 2015, 137, 5536 – 5541.
dc.identifier.citedreferenceM. Klečka, R. Pohl, B. Klepetářová, M. Hocek, Org. Biomol. Chem. 2009, 7, 866.
dc.identifier.citedreferenceM. Klečka, L. P. Slavětínská, M. Hocek, Eur. J. Org. Chem. 2015, 7943 – 7961.
dc.identifier.citedreferenceR. A. Ward, J. G. Kettle, J. Med. Chem. 2011, 54, 4670 – 4677.
dc.identifier.citedreferenceE. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57, 10257 – 10274.
dc.identifier.citedreferenceA. R. D. Taylor, M. Maccoss, A. D. G. Lawson, J. Med. Chem. 2014, 57, 5845 – 5859.
dc.identifier.citedreferenceW. Pitt, J. Med. Chem. 2009, 52, 2952 – 2963.
dc.identifier.citedreferenceD. J. Newman, G. M. Cragg, J. Nat. Prod. 2016, 79, 629 – 661.
dc.identifier.citedreferenceP. Jeschke, Pest Manage. Sci. 2016, 72, 210 – 225.
dc.identifier.citedreferenceK. Murakami, S. Yamada, T. Kaneda, K. Itami, Chem. Rev. 2017, 117, 9302 – 9332.
dc.identifier.citedreferenceD. B. Diaz, A. K. Yudin, Nat. Chem. 2017, 9, 731 – 742.
dc.identifier.citedreferenceP. Hunter, EMBO Rep. 2009, 10, 125 – 128.
dc.identifier.citedreferenceS. K. Mellerup, S. Wang, Chem. Soc. Rev. 2019, 48, 3537 – 3549.
dc.identifier.citedreferenceY. Qin, C. Pagba, A. Piotrowiak, F. Jäkle, J. Am. Chem. Soc. 2004, 126, 7015 – 7018.
dc.identifier.citedreferenceC. R. Wade, A. E. J. Broomsgrove, S. Aldridge, F. P. Gabbaï, Chem. Rev. 2010, 110, 3958 – 3984.
dc.identifier.citedreferenceC. D. Entwistle, T. B. Marder, Angew. Chem. Int. Ed. 2002, 41, 2927 – 2931; Angew. Chem. 2002, 114, 3051 – 3056.
dc.identifier.citedreferenceA. Markham, Drugs 2014, 74, 1555 – 1558.
dc.identifier.citedreferenceL. Ji, S. Griesbeck, T. B. Marder, Chem. Sci. 2017, 8, 846 – 863.
dc.identifier.citedreferenceA. V. Mossine, A. F. Brooks, K. J. Makaravage, J. M. Miller, N. Ichiishi, M. S. Sanford, P. J. H. Scott, Org. Lett. 2015, 17, 5780 – 5783.
dc.identifier.citedreferenceM. A. Larsen, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136, 4287 – 4299.
dc.identifier.citedreferenceS. Preshlock, S. Calderwood, S. Verhoog, M. Tredwell, M. Huiban, A. Hienzsch, S. Gruber, T. C. Wilson, N. J. Taylor, T. Cailly, M. Schedler, T. L. Collier, J. Passchier, R. Smits, J. Mollitor, A. Hoepping, M. Mueller, C. Genicot, J. Mercier, V. Gouverneur, Chem. Commun. 2016, 52, 8361 – 8364.
dc.identifier.citedreferenceA. V. Mossine, S. S. Tanzey, A. F. Brooks, K. J. Makaravage, N. Ichiishi, J. M. Miller, B. D. Henderson, M. B. Skaddan, M. S. Sanford, P. J. H. Scott, Org. Biomol. Chem. 2019, 17, 8701 – 8705.
dc.identifier.citedreferenceN. Miyaura, A. Suzuki, J. Chem. Soc. Chem. Commun. 1979, 866 – 867.
dc.identifier.citedreferenceN. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437 – 3440.
dc.identifier.citedreferenceD. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443 – 4458.
dc.identifier.citedreferenceS. Namirembe, J. P. Morken, Chem. Soc. Rev. 2019, 48, 3464 – 3474.
dc.identifier.citedreferenceJ. W. B. Fyfe, A. J. B. Watson, Chem 2017, 3, 31 – 55.
dc.identifier.citedreferenceS. Darses, J.-P. Genet, Chem. Rev. 2008, 108, 288 – 325.
dc.identifier.citedreferenceJ. Qiao, P. Lam, Synthesis 2011, 829 – 856.
dc.identifier.citedreferenceD. Leonori, V. K. Aggarwal, Acc. Chem. Res. 2014, 47, 3174 – 3183.
dc.identifier.citedreferenceN. Miyaura, Bull. Chem. Soc. Jpn. 2008, 81, 1535 – 1553.
dc.identifier.citedreferenceM. A. Soriano-Ursúa, E. D. Farfán-García, Y. López-Cabrera, E. Querejeta, J. G. Trujillo-Ferrara, Neurotoxicology 2014, 40, 8 – 15.
dc.identifier.citedreferenceE. D. Farfán-García, N. T. Castillo-Mendieta, F. J. Ciprés-Flores, I. I. Padilla-Martínez, J. G. Trujillo-Ferrara, M. A. Soriano-Ursúa, Toxicol. Lett. 2016, 258, 115 – 125.
dc.identifier.citedreferenceG. Wulff, M. Lauer, J. Organomet. Chem. 1983, 256, 1 – 9.
dc.identifier.citedreferenceJ. Morgan, J. T. Pinhey, J. Chem. Soc. Perkin Trans. 1 1990, 715 – 720.
dc.identifier.citedreferenceT. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508 – 7510.
dc.identifier.citedreferenceW. K. Chow, O. Y. Yuen, P. Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F. Y. Kwong, RSC Adv. 2013, 3, 12518.
dc.identifier.citedreferenceM. Murata, Heterocycles 2012, 85, 1795 – 1819.
dc.identifier.citedreferenceA. Del Grosso, P. J. Singleton, C. A. Muryn, M. J. Ingleson, Angew. Chem. Int. Ed. 2011, 50, 2102 – 2106; Angew. Chem. 2011, 123, 2150 – 2154.
dc.identifier.citedreferenceM. A. Légaré, M. A. Courtemanche, É. Rochette, F. G. Fontaine, Science 2015, 349, 513 – 516.
dc.identifier.citedreferenceS. Oda, K. Ueura, B. Kawakami, T. Hatakeyama, Org. Lett. 2020, 22, 700 – 704.
dc.identifier.citedreferenceH.-X. Dai, J.-Q. Yu, J. Am. Chem. Soc. 2012, 134, 134 – 137.
dc.identifier.citedreferenceT. Dombray, C. G. Werncke, S. Jiang, M. Grellier, L. Vendier, S. Bontemps, J. B. Sortais, S. Sabo-Etienne, C. Darcel, J. Am. Chem. Soc. 2015, 137, 4062 – 4065.
dc.identifier.citedreferenceS. K. Bose, A. Deißenberger, A. Eichhorn, P. G. Steel, Z. Lin, T. B. Marder, Angew. Chem. Int. Ed. 2015, 54, 11843 – 11847; Angew. Chem. 2015, 127, 12009 – 12014.
dc.identifier.citedreferenceJ. a. Fernández-Salas, S. Manzini, L. Piola, A. M. Z. Slawin, S. P. Nolan, Chem. Commun. 2014, 50, 6782 – 6784.
dc.identifier.citedreferenceT. Furukawa, M. Tobisu, N. Chatani, Chem. Commun. 2015, 51, 6508 – 6511.
dc.identifier.citedreferenceT. Furukawa, M. Tobisu, N. Chatani, J. Am. Chem. Soc. 2015, 137, 12211 – 12214.
dc.identifier.citedreferenceC. B. Bheeter, A. D. Chowdhury, R. Adam, R. Jackstell, M. Beller, Org. Biomol. Chem. 2015, 13, 10336 – 10340.
dc.identifier.citedreferenceJ. V. Obligacion, S. P. Semproni, P. J. Chirik, J. Am. Chem. Soc. 2014, 136, 4133 – 4136.
dc.identifier.citedreferenceT. J. Mazzacano, N. P. Mankad, J. Am. Chem. Soc. 2013, 135, 17258 – 17261.
dc.identifier.citedreferenceP. Nguyen, H. P. Blom, S. A. Westcott, N. J. Taylor, T. B. Marder, J. Am. Chem. Soc. 1993, 115, 9329 – 9330.
dc.identifier.citedreferenceC. N. Iverson, M. R. Smith   III, J. Am. Chem. Soc. 1999, 121, 7696 – 7697.
dc.identifier.citedreferenceK. Kawamura, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 8422 – 8423.
dc.identifier.citedreferenceJ.-Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka,  Jr., M. R. Smith   III, Science 2002, 295, 305 – 308.
dc.identifier.citedreferenceT. Ishiyama, J. Takagi, J. F. Hartwig, N. Miyaura, Angew. Chem. Int. Ed. 2002, 41, 3056 – 3058; Angew. Chem. 2002, 114, 3182 – 3184.
dc.identifier.citedreferenceS. M. Preshlock, B. Ghaffari, P. E. Maligres, S. W. Krska, R. E. Maleczka,  Jr., M. R. Smith   III, J. Am. Chem. Soc. 2013, 135, 7572 – 7582.
dc.identifier.citedreferenceR. J. Oeschger, M. A. Larsen, A. Bismuto, J. F. Hartwig, J. Am. Chem. Soc. 2019, 141, 16479 – 16485.
dc.identifier.citedreferenceT. Ishiyama, N. Miyaura, Pure Appl. Chem. 2006, 78, 1369 – 1375.
dc.identifier.citedreferenceP. A. Cox, A. G. Leach, A. D. Campbell, G. C. Lloyd-Jones, J. Am. Chem. Soc. 2016, 138, 9145.
dc.identifier.citedreferenceH. Tajuddin, P. Harrisson, B. Bitterlich, J. C. Collings, N. Sim, A. S. Batsanov, M. S. Cheung, S. Kawamorita, A. C. Maxwell, L. Shukla, J. Morris, Z. Lin, T. B. Marder, P. G. Steel, Chem. Sci. 2012, 3, 3505 – 3515.
dc.identifier.citedreferenceH. Tamura, H. Yamazaki, H. Sato, S. Sakaki, J. Am. Chem. Soc. 2003, 125, 16114 – 16126.
dc.identifier.citedreferenceC. W. Liskey, C. S. Wei, D. R. Pahls, J. F. Hartwig, Chem. Commun. 2009, 5603 – 5605.
dc.identifier.citedreferenceG. A. Chotana, B. A. Vanchura   II, M. K. Tse, R. J. Staples, R. E. Maleczka,  Jr., M. R. Smith   III, Chem. Commun. 2009, 5731 – 5733.
dc.identifier.citedreferenceT. M. Boller, J. M. Murphy, M. Hapke, T. Ishiyama, N. Miyaura, J. F. Hartwig, J. Am. Chem. Soc. 2005, 127, 14263 – 14278.
dc.identifier.citedreferenceB. A. Vanchura   II, S. M. Preshlock, P. C. Roosen, V. A. Kallepalli, R. J. Staples, R. E. Maleczka,  Jr., D. A. Singleton, M. R. Smith   III, Chem. Commun. 2010, 46, 7724 – 7726.
dc.identifier.citedreferenceA. G. Green, P. Liu, C. A. Merlic, K. N. Houk, J. Am. Chem. Soc. 2014, 136, 4575 – 4583.
dc.identifier.citedreferenceT. Ishiyama, Y. Nobuta, J. F. Hartwig, N. Miyaura, Chem. Commun. 2003, 2924.
dc.identifier.citedreferenceG. A. Chotana, M. A. Rak, M. R. Smith   III, J. Am. Chem. Soc. 2005, 127, 10539 – 10544.
dc.identifier.citedreferenceM. Ding, P. G. Steel, unpublished results.
dc.identifier.citedreferenceA. Ros, J. M. Lassaletta, R. Fernandez, Chem. Soc. Rev. 2014, 43, 3229 – 3243.
dc.identifier.citedreferenceY. Kuroda, Y. Nakao, Chem. Lett. 2019, 48, 1092 – 1100.
dc.identifier.citedreferenceC. Haldar, M. Emdadul Hoque, R. Bisht, B. Chattopadhyay, Tetrahedron Lett. 2018, 59, 1269 – 1277.
dc.identifier.citedreferenceS. Kawamorita, H. Ohmiya, K. Hara, A. Fukuoka, M. Sawamura, J. Am. Chem. Soc. 2009, 131, 5058 – 5059.
dc.identifier.citedreferenceY. Kenji, K. Soichiro, O. Hirohisa, S. Masaya, Org. Lett. 2010, 12, 3978 – 3981.
dc.identifier.citedreferenceS. Konishi, S. Kawamorita, T. Iwai, P. G. Steel, T. B. Marder, M. Sawamura, Chem. Asian J. 2014, 9, 434 – 438.
dc.identifier.citedreferenceS. Kawamorita, H. Ohmiya, M. Sawamura, J. Org. Chem. 2010, 75, 3855 – 3858.
dc.identifier.citedreferenceD. W. Robbins, T. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc. 2010, 132, 4068 – 4069.
dc.identifier.citedreferenceB. Su, J. F. Hartwig, Angew. Chem. Int. Ed. 2018, 57, 10163 – 10167; Angew. Chem. 2018, 130, 10320 – 10324.
dc.identifier.citedreferenceT. A. Boebel, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 7534 – 7535.
dc.identifier.citedreferenceY. Sumida, R. Harada, T. Sumida, D. Hashizume, T. Hosoya, Chem. Lett. 2018, 47, 1251 – 1254.
dc.identifier.citedreferenceY. Sumida, R. Harada, T. Kato-Sumida, K. Johmoto, H. Uekusa, T. Hosoya, Org. Lett. 2014, 16, 6240 – 6243.
dc.identifier.citedreferenceP. C. Roosen, V. A. Kallepalli, B. Chattopadhyay, D. A. Singleton, R. E. Maleczka,  Jr., M. R. Smith   III, J. Am. Chem. Soc. 2012, 134, 11350 – 11353.
dc.identifier.citedreferenceS. M. Preshlock, D. L. Plattner, P. E. Maligres, S. W. Krska, R. E. Maleczka,  Jr., M. R. Smith   III, Angew. Chem. Int. Ed. 2013, 52, 12915 – 12919; Angew. Chem. 2013, 125, 13153 – 13157.
dc.identifier.citedreferenceB. Chattopadhyay, J. E. Dannatt, I. L. Andujar-De Sanctis, K. A. Gore, R. E. Maleczka,  Jr., D. A. Singleton, M. R. Smith   III, J. Am. Chem. Soc. J. Am. Chem. Soc 2017, 139, 7864 – 7871.
dc.identifier.citedreferenceY. Kuninobu, H. Ida, M. Nishi, M. Kanai, Nat. Chem. 2015, 7, 712 – 717.
dc.identifier.citedreferenceM. Mihai, R. Phipps, Synlett 2017, 28, 1011 – 1017.
dc.identifier.citedreferenceH. J. Davis, M. T. Mihai, R. J. Phipps, J. Am. Chem. Soc. 2016, 138, 12759 – 12762.
dc.identifier.citedreferenceH. J. Davis, G. R. Genov, R. J. Phipps, Angew. Chem. Int. Ed. 2017, 56, 13351 – 13355; Angew. Chem. 2017, 129, 13536 – 13540.
dc.identifier.citedreferenceM. T. Mihai, H. J. Davis, G. R. Genov, R. J. Phipps, ACS Catal. 2018, 8, 3764 – 3769.
dc.identifier.citedreferenceM. E. Hoque, R. Bisht, C. Haldar, B. Chattopadhyay, J. Am. Chem. Soc. 2017, 139, 7745 – 7748.
dc.identifier.citedreferenceL. Yang, N. Uemura, Y. Nakao, J. Am. Chem. Soc. J. Am. Chem. Soc 2019, 141, 7972 – 7979.
dc.identifier.citedreferenceL. Yang, K. Semba, Y. Nakao, Angew. Chem. Int. Ed. 2017, 56, 4853 – 4857; Angew. Chem. 2017, 129, 4931 – 4935.
dc.identifier.citedreferenceM. T. Mihai, B. D. Williams, R. J. Phipps, J. Am. Chem. Soc. 2019, 141, 15477 – 15482.
dc.identifier.citedreferenceJ. R. Montero Bastidas, T. J. Oleskey, S. L. Miller, M. R. Smith   III, R. E. Maleczka,  Jr., J. Am. Chem. Soc. 2019, 141, 15483 – 15487.
dc.identifier.citedreferenceY. Saito, Y. Segawa, K. Itami, J. Am. Chem. Soc. 2015, 137, 5193 – 5198.
dc.identifier.citedreferenceB. E. Haines, Y. Saito, Y. Segawa, K. Itami, D. G. Musaev, ACS Catal. 2016, 6, 7536 – 7546.
dc.identifier.citedreferenceS. L. Miller, G. A. Chotana, J. A. Fritz, B. Chattopadhyay, R. E. Maleczka,  Jr., M. R. Smith   III, Org. Lett. 2019, 21, 6388 – 6392.
dc.identifier.citedreferenceS. A. Sadler, H. Tajuddin, I. A. I. Mkhalid, A. S. Batsanov, D. Albesa-Jove, M. S. Cheung, A. C. Maxwell, L. Shukla, B. Roberts, D. C. Blakemore, Z. Lin, T. B. Marder, P. G. Steel, Org. Biomol. Chem. 2014, 12, 7318 – 7327.
dc.identifier.citedreferenceN. Primas, A. Bouillon, S. Rault, Tetrahedron 2010, 66, 8121 – 8136.
dc.identifier.citedreferenceJ. F. Hartwig, Chem. Soc. Rev. 2011, 40, 1992 – 2002.
dc.identifier.citedreferenceJ. Takagi, K. Sato, J. F. Hartwig, T. Ishiyama, N. Miyaura, Tetrahedron Lett. 2002, 43, 5649 – 5651.
dc.identifier.citedreferenceT. Ishiyama, J. Takagi, Y. Yonekawa, J. F. Hartwig, N. Miyaura, Adv. Synth. Catal. 2003, 345, 1103 – 1106.
dc.identifier.citedreferenceD. W. Robbins, J. F. Hartwig, Org. Lett. 2012, 14, 4266 – 4269.
dc.identifier.citedreferenceG. A. Chotana, V. A. Kallepalli, R. E. Maleczka,  Jr., M. R. Smith   III, Tetrahedron 2008, 64, 6103 – 6114.
dc.identifier.citedreferenceM. Murai, N. Nishinaka, K. Takai, Angew. Chem. Int. Ed. 2018, 57, 5843 – 5847; Angew. Chem. 2018, 130, 5945 – 5949.
dc.identifier.citedreferenceP. Harrisson, J. Morris, T. B. Marder, P. G. Steel, Org. Lett. 2009, 11, 3586 – 3589.
dc.identifier.citedreferenceE. M. Beck, R. Hatley, M. J. Gaunt, Angew. Chem. Int. Ed. 2008, 47, 3004 – 3007; Angew. Chem. 2008, 120, 3046 – 3049.
dc.identifier.citedreferenceV. A. Kallepalli, F. Shi, S. Paul, E. N. Onyeozili, R. E. Maleczka,  Jr., M. R. Smith   III, J. Org. Chem. 2009, 74, 9199 – 9201.
dc.identifier.citedreferenceI. Sasaki, J. Taguchi, S. Hiraki, H. Ito, T. Ishiyama, Chem. Eur. J. 2015, 21, 9236 – 9241.
dc.identifier.citedreferenceB. Ghaffari, S. M. Preshlock, D. L. Plattner, R. J. Staples, P. E. Maligres, S. W. Krska, R. E. Maleczka,  Jr., M. R. Smith   III, J. Am. Chem. Soc. 2014, 136, 14345 – 14348.
dc.identifier.citedreferenceH. Hata, H. Shinokubo, A. Osuka, J. Am. Chem. Soc. 2005, 127, 8264 – 8265.
dc.identifier.citedreferenceS. Hiroto, I. Hisaki, H. Shinokubo, A. Osuka, Angew. Chem. Int. Ed. 2005, 44, 6763 – 6766; Angew. Chem. 2005, 117, 6921 – 6924.
dc.identifier.citedreferenceH. Hata, S. Yamaguchi, G. Mori, S. Nakazono, T. Katoh, K. Takatsu, S. Hiroto, H. Shinokubo, A. Osuka, Chem. Asian J. 2007, 2, 849 – 859.
dc.identifier.citedreferenceR. Shishido, I. Sasaki, T. Seki, T. Ishiyama, H. Ito, Chem. Eur. J. 2019, 25, 12924 – 12928.
dc.identifier.citedreferenceV. A. Kallepalli, K. A. Gore, F. Shi, L. Sanchez, G. A. Chotana, S. L. Miller, R. E. Maleczka,  Jr., M. R. Smith   III, J. Org. Chem. 2015, 80, 8341 – 8353.
dc.identifier.citedreferenceG. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006, 106, 2875 – 2911.
dc.identifier.citedreferenceF. Batool, S. Parveen, A. H. Emwas, S. Sioud, X. Gao, M. A. Munawar, G. A. Chotana, Org. Lett. 2015, 17, 4256 – 4259.
dc.identifier.citedreferenceA. S. Eastabrook, C. Wang, E. K. Davison, J. Sperry, J. Org. Chem. 2015, 80, 1006 – 1017.
dc.identifier.citedreferenceW. F. Lo, H. M. Kaiser, A. Spannenberg, M. Beller, M. K. Tse, Tetrahedron Lett. 2007, 48, 371 – 375.
dc.identifier.citedreferenceF. Shen, S. Tyagarajan, D. Perera, S. W. Krska, P. E. Maligres, M. R. Smith   III, R. E. Maleczka,  Jr., Org. Lett. 2016, 18, 1554 – 1557.
dc.identifier.citedreferenceS. Paul, G. A. Chotana, D. Holmes, R. C. Reichle, R. E. Maleczka,  Jr., M. R. Smith   III, J. Am. Chem. Soc. 2006, 128, 15552 – 15553.
dc.working.doi10.7302/84en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.