Show simple item record

Virtual Articulators and Virtual Mounting Procedures: Where Do We Stand?

dc.contributor.authorLepidi, Luca
dc.contributor.authorGalli, Matthew
dc.contributor.authorMastrangelo, Filiberto
dc.contributor.authorVenezia, Pietro
dc.contributor.authorJoda, Tim
dc.contributor.authorWang, Hom‐lay
dc.contributor.authorLi, Junying
dc.date.accessioned2021-02-04T21:49:22Z
dc.date.available2022-02-04 16:49:21en
dc.date.available2021-02-04T21:49:22Z
dc.date.issued2021-01
dc.identifier.citationLepidi, Luca; Galli, Matthew; Mastrangelo, Filiberto; Venezia, Pietro; Joda, Tim; Wang, Hom‐lay ; Li, Junying (2021). "Virtual Articulators and Virtual Mounting Procedures: Where Do We Stand?." Journal of Prosthodontics 30(1): 24-35.
dc.identifier.issn1059-941X
dc.identifier.issn1532-849X
dc.identifier.urihttps://hdl.handle.net/2027.42/166176
dc.description.abstractA virtual articulator is a computer software tool that is capable of reproducing the relationship between the jaws and simulating jaw movement. It has gradually gained research interest in dentistry over the past decade. In prosthodontics, the virtual articulator should be considered as an additional diagnostic and treatment planning tool to the mechanical articulator, especially in complex cases involving alterations to the vertical dimension of occlusion. Numerous authors have reported on the available digital methodologies used for the assembly of virtual arch models in a virtual articulator, focusing their attention on topics such as the virtual facebow and digital occlusal registration. To correctly simulate jaw movement, the jaw models have to be digitalized and properly mounted on the virtual articulator. The aim of this review was to discuss the current knowledge surrounding the various techniques and methodologies related to virtual mounting in dentistry, and whether virtual articulators will become commonplace in clinical practice in the future. This review also traces the history of the virtual articulator up to its current state and discusses recently developed approaches and workflows for virtual mounting based on current knowledge and technological devices.
dc.publisherWiley Periodicals, Inc.
dc.subject.othervirtual patient
dc.subject.othervirtual mounting
dc.subject.otherVirtual articulator
dc.subject.othervirtual facebow
dc.subject.otherdigital dentistry
dc.subject.otherCBCT
dc.titleVirtual Articulators and Virtual Mounting Procedures: Where Do We Stand?
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166176/1/jopr13240_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166176/2/jopr13240.pdf
dc.identifier.doi10.1111/jopr.13240
dc.identifier.doihttps://dx.doi.org/10.7302/99
dc.identifier.sourceJournal of Prosthodontics
dc.identifier.citedreferenceBernhardt O, Küppers N, Rosin M, et al: Comparative tests of arbitrary and kinematic transverse horizontal axis recordings of mandibular movements. J Prosthet Dent. 2003; 89: 175 - 179
dc.identifier.citedreferenceIwaki Y, Wakabayashi N, Igarashi Y: Dimensional accuracy of optical bite registration in single and multiple unit restorations. Oper Dent. 2013; 38: 309 - 315
dc.identifier.citedreferenceSolaberrieta E, Otegi JR, Goicoechea N, et al: Comparison of a conventional and virtual occlusal record. J Prosthet Dent. 2015; 114: 92 - 97
dc.identifier.citedreferenceEdher F, Hannam AG, Tobias DL, et al: The accuracy of virtual interocclusal registration during intraoral scanning. J Prosthet Dent. 2018; 120: 904 - 912
dc.identifier.citedreferenceSolaberrieta E, Garmendia A, Brizuela A, et al: Intraoral digital impressions for virtual occlusal records: section quantity and dimensions. Biomed Res Int. 2016; 2016: 7173824
dc.identifier.citedreferenceAhlholm P, Sipila K, Vallittu P, et al: Digital versus conventional impressions in fixed prosthodontics: a review. J Prosthodont. 2018; 27: 35 - 41
dc.identifier.citedreferenceSeo JM, Oh WS, Lee JJ: A technique for verifying the accuracy of the virtual mounting of digital scans against the actual occlusal contacts. J Prosthet Dent. 2019; 121: 729 - 732
dc.identifier.citedreferenceHsu MR, Driscoll CF, Romberg E, et al: Accuracy of dynamic virtual articulation: trueness and precision. J Prosthodont. 2019; 28: 436 - 443
dc.identifier.citedreferenceYee SHX, Esguerra RJ, Chew AAQ, et al: Three- dimensional static articulation accuracy of virtual models - Part I: system trueness and precision. J Prosthodont. 2018; 27: 129 - 136
dc.identifier.citedreferenceYee SHX, Esguerra RJ, Chew AAQ, et al: Three- dimensional static articulation accuracy of virtual models- part II: effect of model scanner- CAD systems and articulation method. J Prosthodont. 2018; 27: 137 - 144
dc.identifier.citedreferenceRadu M, Radu D, Abboud M: Digital recording of a conventionally determined centric relation: a technique using an intraoral scanner. J Prosthet Dent. 2020; 123 ( 2 ): 228 - 231.
dc.identifier.citedreferenceNilsson J, Thor A, Kamer L: Development of workflow for recording virtual bite in the planning of orthognathic operations. Br J Oral Maxillofac Surg. 2015; 53: 384 - 386
dc.identifier.citedreferenceThe Glossary of Prosthodontic Terms: Ninth Edition. J Prosthet Dent. 2017; 117: e1 - e105
dc.identifier.citedreferenceNoguchi N, Tsuji M, Shigematsu M, et al: An orthognathic simulation system integrating teeth, jaw and face data using 3D cephalometry. Int J Oral Maxillofac Surg. 2007; 36: 640 - 645
dc.identifier.citedreferenceGhanai S, Marmulla R, Wiechnik J, et al: Computer- assisted three- dimensional surgical planning: 3D virtual articulator: technical note. Int J Oral Maxillofac Surg. 2010; 39: 75 - 82
dc.identifier.citedreferenceSolaberrieta E, Minguez R, Etxaniz O, et al: Improving the digital workflow: direct transfer from patient to virtual articulator. Int J Comput Dent. 2013; 16: 285 - 292
dc.identifier.citedreferenceSolaberrieta E, Otegi JR, Minguez R, et al: Improved digital transfer of the maxillary cast to a virtual articulator. J Prosthet Dent. 2014; 112: 921 - 924
dc.identifier.citedreferenceSolaberrieta E, Garmendia A, Minguez R, et al: Virtual facebow technique. J Prosthet Dent. 2015; 114: 751 - 755
dc.identifier.citedreferenceSolaberrieta E, Minguez R, Barrenetxea L, et al: Comparison of the accuracy of a 3- dimensional virtual method and the conventional method for transferring the maxillary cast to a virtual articulator. J Prosthet Dent. 2015; 113: 191 - 197
dc.identifier.citedreferenceLam WY, Hsung RT, Choi WW, et al: A 2- part facebow for CAD- CAM dentistry. J Prosthet Dent. 2016; 116: 843 - 847
dc.identifier.citedreferencePetre A, Drafta S, Stefanescu C, et al: Virtual facebow technique using standardized background images. J Prosthet Dent. 2019; 121: 724 - 728
dc.identifier.citedreferenceJoda T, Gallucci GO: The virtual patient in dental medicine. Clin Oral Implants Res. 2015; 26: 725 - 726
dc.identifier.citedreferenceLepidi L, Chen Z, Ravida A, et al: A full- digital technique to mount a maxillary arch scan on a virtual articulator. J Prosthodont. 2019; 28: 335 - 338
dc.identifier.citedreferenceJoda T, Bragger U, Gallucci G: Systematic literature review of digital three- dimensional superimposition techniques to create virtual dental patients. Int J Oral Maxillofac Implants. 2015; 30: 330 - 337
dc.identifier.citedreferenceLam WYH, Hsung RTC, Choi WWS, et al: A clinical technique for virtual articulator mounting with natural head position by using calibrated stereophotogrammetry. J Prosthet Dent. 2018; 119: 902 - 908
dc.identifier.citedreferenceKim JE, Kim SJ, Kwon DH, et al: Mounting casts on a mechanical articulator by using digital multisource data: a dental technique. J Prosthet Dent. 2020; S0022- 3913 ( 19 ) 30702 - 4
dc.identifier.citedreferenceDawood A, Marti Marti B, Sauret- Jackson V, et al: 3D printing in dentistry. Br Dent J. 2015; 219: 521 - 529
dc.identifier.citedreferenceHong SJ, Choi Y, Park M, et al: Setting the sagittal condylar inclination on a virtual articulator using intraoral scan of protrusive interocclusal position and cone beam computed tomography. J Prosthodont. 2020; 29: 185 - 189
dc.identifier.citedreferenceAbduo J: Safety of increasing vertical dimension of occlusion: a systematic review. Quintessence Int. 2012; 43: 369 - 380
dc.identifier.citedreferenceKoralakunte PR, Aljanakh M: The role of virtual articulator in prosthetic and restorative dentistry. J Clin Diagn Res. 2014; 8: Ze25 - 28
dc.identifier.citedreferenceBisler A, Bockholt U, Kordass B, et al: The virtual articulator. Int J Comput Dent. 2002; 5: 101 - 106
dc.identifier.citedreferenceMaestre- Ferrin L, Romero- Millan J, Penarrocha- Oltra D, et al: Virtual articulator for the analysis of dental occlusion: an update. Med Oral Patol Oral Cir Bucal. 2012; 17: e160 - 163
dc.identifier.citedreferenceSzentpétery A: [Dynamic correction of occlusal surfaces by means of the CAD- CAM methods. II]. Fogorv Sz. 1999; 92: 263 - 272
dc.identifier.citedreferenceKordass B, Gartner C, Sohnel A, et al: The virtual articulator in dentistry: concept and development. Dent Clin North Am. 2002; 46: 493 - 506, vi
dc.identifier.citedreferenceGartner C, Kordass B: The virtual articulator: development and evaluation. Int J Comput Dent. 2003; 6: 11 - 24
dc.identifier.citedreferenceWakabayashi K, Sohmura T, Takahashi J, et al: Development of the computerized dental cast form analyzing system- three dimensional diagnosis of dental arch form and the investigation of measuring condition. Dent Mater J. 1997; 16: 180 - 190
dc.identifier.citedreferenceUry E, Fornai C, Weber GW: Accuracy of transferring analog dental casts to a virtual articulator. J Prosthet Dent. 2020; 123(2): 305- 313
dc.identifier.citedreferenceSolaberrieta E, Minguez R, Barrenetxea L, et al: Direct transfer of the position of digitized casts to a virtual articulator. J Prosthet Dent. 2013; 109: 411 - 414
dc.identifier.citedreferenceEnder A, Attin T, Mehl A: In vivo precision of conventional and digital methods of obtaining complete- arch dental impressions. J Prosthet Dent. 2016; 115: 313 - 320
dc.identifier.citedreferencePatzelt SB, Emmanouilidi A, Stampf S, et al: Accuracy of full- arch scans using intraoral scanners. Clin Oral Investig. 2014; 18: 1687 - 1694
dc.identifier.citedreferenceEnder A, Mehl A: Accuracy of complete- arch dental impressions: a new method of measuring trueness and precision. J Prosthet Dent. 2013; 109: 121 - 128
dc.identifier.citedreferenceAbduo J, Elseyoufi M: Accuracy of intraoral scanners: a systematic review of influencing factors. Eur J Prosthodont Restor Dent. 2018; 26: 101 - 121
dc.identifier.citedreferenceNedelcu R, Olsson P, Nyström I, et al: Accuracy and precision of 3 intraoral scanners and accuracy of conventional impressions: a novel in vivo analysis method. J Dent. 2018; 69: 110 - 118
dc.identifier.citedreferenceKihara H, Hatakeyama W, Komine F, et al: Accuracy and practicality of intraoral scanner in dentistry: a literature review. J Prosthodont Res. 2020; 64 ( 2 ): 109 - 113
dc.identifier.citedreferenceLee KM: Comparison of two intraoral scanners based on three- dimensional surface analysis. Prog Orthod. 2018; 19: 6
dc.identifier.citedreferenceKeul C, Güth JF: Accuracy of full- arch digital impressions: an in vitro and in vivo comparison. Clin Oral Investig. 2020; 24: 735 - 745
dc.identifier.citedreferenceAragon ML, Pontes LF, Bichara LM, et al: Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: a systematic review. Eur J Orthod. 2016; 38: 429 - 434
dc.identifier.citedreferenceGuth JF, Runkel C, Beuer F, et al: Accuracy of five intraoral scanners compared to indirect digitalization. Clin Oral Investig. 2017; 21: 1445 - 1455
dc.identifier.citedreferenceMuallah J, Wesemann C, Nowak R, et al: Accuracy of full- arch scans using intraoral and extraoral scanners: an in vitro study using a new method of evaluation. Int J Comput Dent. 2017; 20: 151 - 164
dc.identifier.citedreferenceAlbdour EA, Shaheen E, Vranckx M, et al: A novel in vivo method to evaluate trueness of digital impressions. BMC Oral Health. 2018; 18: 117
dc.identifier.citedreferenceMangano FG, Veronesi G, Hauschild U, et al: Trueness and precision of four intraoral scanners in oral implantology: a comparative in vitro study. PLoS One. 2016; 11: e0163107.
dc.identifier.citedreferenceGoracci C, Franchi L, Vichi A, et al: Accuracy, reliability, and efficiency of intraoral scanners for full- arch impressions: a systematic review of the clinical evidence. Eur J Orthod. 2016; 38: 422 - 428
dc.identifier.citedreferenceJoda T, Zarone F, Ferrari M: The complete digital workflow in fixed prosthodontics: a systematic review. BMC Oral Health. 2017; 17: 124
dc.identifier.citedreferenceGiachetti L, Sarti C, Cinelli F, et al: Accuracy of digital impressions in fixed prosthodontics: a systematic review of clinical studies. Int J Prosthodont. 2020; 33: 192 - 201
dc.working.doi10.7302/99en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.