Show simple item record

Effect of direct metal laser sintering build parameters on defects and ultrasonic fatigue performance of additively manufactured AlSi10Mg

dc.contributor.authorRhein, Robert K.
dc.contributor.authorShi, Qianying
dc.contributor.authorArjun Tekalur, Srinivasan
dc.contributor.authorWayne Jones, J.
dc.contributor.authorCarroll, Jason W.
dc.date.accessioned2021-02-04T21:49:30Z
dc.date.available2022-03-04 16:49:26en
dc.date.available2021-02-04T21:49:30Z
dc.date.issued2021-02
dc.identifier.citationRhein, Robert K.; Shi, Qianying; Arjun Tekalur, Srinivasan; Wayne Jones, J.; Carroll, Jason W. (2021). "Effect of direct metal laser sintering build parameters on defects and ultrasonic fatigue performance of additively manufactured AlSi10Mg." Fatigue & Fracture of Engineering Materials & Structures 44(2): 295-305.
dc.identifier.issn8756-758X
dc.identifier.issn1460-2695
dc.identifier.urihttps://hdl.handle.net/2027.42/166178
dc.description.abstractThe high cycle fatigue behaviour of additively manufactured AlSi10Mg is evaluated using ultrasonic fatigue as a means to accelerate fatigue testing. Build parameters during the additive manufacturing process are varied, and their effect on defect type, size, and distribution is determined. These defects are further found to influence fatigue behaviour, which is analysed using a Murakami area model. Finally, the ultrasonic fatigue test results are interpreted in the context of applied stress intensity factor and an optimized fatigue limit fit. Two different kinds of physical behaviour, representing Murakami dependence and a long crack regime, are found to better correlate the fatigue life behaviour than the Murakami model alone. With this information, we can tailor defect size, type and distribution, within the context of an optimized processing route, to obtain necessary high cycle fatigue properties.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.otherultrasonic fatigue
dc.subject.otherfatigue
dc.subject.otheradditive manufacturing
dc.titleEffect of direct metal laser sintering build parameters on defects and ultrasonic fatigue performance of additively manufactured AlSi10Mg
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166178/1/ffe13355.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166178/2/ffe13355_am.pdf
dc.identifier.doi10.1111/ffe.13355
dc.identifier.doihttps://dx.doi.org/10.7302/101
dc.identifier.sourceFatigue & Fracture of Engineering Materials & Structures
dc.identifier.citedreferenceNadot Y, Mendez J, Ranganathan N. Influence of casting defects on the fatigue limit of nodular cast iron. Int J Fatigue. 2004; 26 ( 3 ): 311 ‐ 319.
dc.identifier.citedreferenceFatemi SA, Ashany JZ, Aghchai AJ, Abolghasemi A. Experimental investigation of process parameters on layer thickness and density in direct metal laser sintering: a response surface methodology approach. Virtual Phys Prototyping. 2017; 12 ( 2 ): 133 ‐ 140.
dc.identifier.citedreferenceWycisk E, Solbach A, Siddique S, Herzog D, Walther F, Emmelmann C. Effects of defects in laser additive manufactured Ti‐6Al‐4V on fatigue properties. Phys Proc. 2014; 56: 371 ‐ 378.
dc.identifier.citedreferenceKempen K, Thijs L, Humbeeck JV, Kruth J‐P. Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Proc. 2012; 39: 439 ‐ 446.
dc.identifier.citedreferenceBrandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10Mg samples using selective laser melting: microstructure, high cycle fatigue, and fracture behavior. Mater Des. 2012; 34: 159 ‐ 169.
dc.identifier.citedreferenceMayer H. Recent developments in ultrasonic fatigue. Fatigue Fract Eng Mater Struct. 2016; 39 ( 1 ): 3 ‐ 29.
dc.identifier.citedreferenceBiffi CA, Fiocchi J, Bassani P, et al. Microstructure and preliminary fatigue analysis on AlSi10Mg samples manufactured by SLM. Procedia Struct Integrity. 2017; 7: 50 ‐ 57.
dc.identifier.citedreferenceMayer H. Fatigue crack growth and threshold measurements at very high frequencies. Int Mater Rev. 1999; 44 ( 1 ): 1 ‐ 34.
dc.identifier.citedreferenceMurakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of nonmetallic inclusions on fatigue strength of high strength steel. Trans Jpn Soc Mech Eng. 1988; 54: 688 ‐ 695.
dc.identifier.citedreferenceMurakami Y. Fetal fatigue: Effects of Small Defects and Nonmetallic Inclusions: Elsevier; 2002.
dc.identifier.citedreferenceChapetti MD. A simple model to predict the very high cycle fatigue resistance of steels. Int J Fatigue. 2011; 33 ( 7 ): 833 ‐ 841.
dc.identifier.citedreferenceSchönbauer BM, Yanase K, Endo M. The influence of various types of small defects on the fatigue limit of precipitation‐hardened 17‐4PH stainless steel. Theor Appl Fract Mech. 2017; 87: 35 ‐ 49.
dc.identifier.citedreferenceSchönbauer BM, Mayer H. Effect of small defects on the fatigue strength of martensitic stainless steels. Int J Fatigue. 2019; 127: 362 ‐ 375.
dc.identifier.citedreferenceBeretta S. Fatigue strength assessment of AlSi7Mg castings. In: Proc Int Conf Importance Fatigue process Balkema Publishers; 1999: 83 ‐ 92.
dc.identifier.citedreferenceOberwinkler C, Leitner H, Eichlseder W. Computation of fatigue safety factors for high‐pressure die cast (HPDC) aluminum components taking into account the pore size distribution. SAE Technical Paper; 1999.
dc.identifier.citedreferenceHouria MI, Nadot Y, Fathallah R, Roy M, Maijer DM. Influence of casting defect and SDAS on the multiaxial fatigue behaviour of A356‐T6 alloy including mean stress effect. Int J Fatigue. 2015; 80: 90 ‐ 102.
dc.identifier.citedreferenceMcDowell DL, Gall K, Horstemeyer MF, Fan J. Microstructure‐based fatigue modeling of cast A356‐T6 alloy. Eng Fract Mech. 2003; 70 ( 1 ): 49 ‐ 80.
dc.identifier.citedreferenceLinder J, Axelsson M, Nilsson H. The influence of porosity on the fatigue life for sand and permanent mould cast aluminium. Int J Fatigue. 2006; 28 ( 12 ): 1752 ‐ 1758.
dc.identifier.citedreferenceRoy M, Nadot Y, Maijer DM, Benoit G. Multiaxial fatigue behaviour of A356‐T6. Fatigue Fract Eng Mater Struct. 2012; 35 ( 12 ): 1148 ‐ 1159.
dc.identifier.citedreferenceCeschini L, Morri A, Sambogna G. The effect of hot isostatic pressing on the fatigue behaviour of sand‐cast A356‐T6 and A204‐T6 aluminum alloys. J Mater Process Technol. 2008; 204 ( 1 ): 231 ‐ 238.
dc.identifier.citedreferenceBeretta S, Romano S. A comparison of fatigue strength sensitivity to defects for materials manufactured by am or traditional processes. Int J Fatigue. 2017; 94: 178 ‐ 191.
dc.identifier.citedreferenceTajiri A, Nozaki T, Uematsu Y, et al. Fatigue limit prediction of large scale cast aluminum alloy A356. Procedia Mater Sci. 2014; 3: 924 ‐ 929. 20th European Conference on Fracture.
dc.identifier.citedreferenceStanzl‐Tschegg SE, Mayer HR, Tschegg EK, Beste A. In‐service loading of AlSi11 aluminium cast alloy in the very high cycle regime. Int J Fatigue. 1993; 15 ( 4 ): 311 ‐ 316.
dc.identifier.citedreferenceStanzl‐Tschegg SE, Mayer HR, Beste A, Kroll S. Fatigue and fatigue crack propagation in AlSi7Mg cast alloys under in‐service loading conditions. Int J Fatigue. 1995; 17 ( 2 ): 149 ‐ 155.
dc.identifier.citedreferenceBuchbinder D, Meiners W, Wissenbach K, Poprawe R. Selective laser melting of aluminum die‐cast alloy—correlations between process parameters, solidification conditions, and resulting mechanical properties. J Laser Appl. 2015; 27 ( S2 ): S29205.
dc.identifier.citedreferenceScott‐Emuakpor O, Schwartz J, George T, Holycross C, Cross C, Slater J. Bending fatigue life characterisation of direct metal laser sintering nickel alloy 718. Fatigue Fract Eng Mater Struct. 2015; 38 ( 9 ): 1105 ‐ 1117.
dc.identifier.citedreferenceThijs L, Verhaeghe F, Craeghs T, Humbeeck J, Kruth J‐P. A study of the microstructural evolution during selective laser melting of Ti‐6Al‐4V. Acta Mater. 2010; 58: 3303 ‐ 3312.
dc.identifier.citedreferenceSun P, Fang ZZ, Xia Y, Zhang Y, Zhou C. A novel method for production of spherical Ti‐6Al‐4V powder for additive manufacturing. Powder Technol. 2016; 301: 331 ‐ 335.
dc.identifier.citedreferenceRead N, Wang W, Essa K, Atallah MM. Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Design. 2015; 65: 417 ‐ 424.
dc.identifier.citedreferenceTrevisan F, Calignano F, Lorusso M, et al. On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Mater. 2017; 10 ( 1 ): 76.
dc.identifier.citedreferenceHerzog D, Seyda V, Wycisk E, Emmelmann C. Additive manufacturing of metals. Acta Mater. 2016; 117: 371 ‐ 392.
dc.identifier.citedreferenceElzanaty H. Effect of composition on the microstructure, tensile and hardness properties of Al‐xSi alloys. J Mater Sci Surf Eng. 2015; 2: 126 ‐ 129.
dc.identifier.citedreferenceKempen K, Thijs L, Humbeeck JV, Kruth J‐P. Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Mater Sci Technol. 2015; 31 ( 8 ): 917 ‐ 923.
dc.identifier.citedreferenceWei HL, Elmer JW, DebRoy T. Three‐dimensional modeling of grain structure evolution during welding of an aluminum alloy. Acta Mater. 2017; 126: 413 ‐ 425.
dc.identifier.citedreferenceAboulkhair NT, Everitt NM, Ashcroft I, Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf. 2014; 1‐4: 77 ‐ 86.
dc.identifier.citedreferenceYadollahi A, Shamsaei N. Additive manufacturing of fatigue resistant materials: challenges and opportunities. Int J Fatigue. 2017; 98: 14 ‐ 31.
dc.working.doi10.7302/101en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.