Show simple item record

Reduced component, buck–boost converter for plug‐in electric vehicles with a current sensing‐based efficient NLCC technique

dc.contributor.authorMishra, Anjanee Kumar
dc.contributor.authorSingh, Ankit Kumar
dc.contributor.authorKim, Taehyung
dc.date.accessioned2021-02-04T21:49:54Z
dc.date.available2022-01-04 16:49:53en
dc.date.available2021-02-04T21:49:54Z
dc.date.issued2020-12
dc.identifier.citationMishra, Anjanee Kumar; Singh, Ankit Kumar; Kim, Taehyung (2020). "Reduced component, buck–boost converter for plug‐in electric vehicles with a current sensing‐based efficient NLCC technique." IET Power Electronics 13(16): 3753-3763.
dc.identifier.issn1755-4535
dc.identifier.issn1755-4543
dc.identifier.urihttps://hdl.handle.net/2027.42/166186
dc.publisherThe Institution of Engineering and Technology
dc.publisherWiley Periodicals, Inc.
dc.subject.otherminimum component count
dc.subject.otheroperation ability
dc.subject.othersystem requirement
dc.subject.otherefficient DC‐link voltage regulation
dc.subject.othernonlinear carrier control technique
dc.subject.otherpower factor correction
dc.subject.othercharging system
dc.subject.otherreduced component
dc.subject.otherbuck–boost converter
dc.subject.otherplug‐in electric vehicles
dc.subject.othercurrent sensing‐based efficient NLCC technique
dc.subject.othercompact power electronic interface
dc.subject.othervehicle operation
dc.subject.otherplug‐in charging
dc.subject.otherB1210 Power electronics, supply and supervisory circuits
dc.subject.otherB8360 Power convertors and power supplies to apparatus
dc.subject.otherB8520 Transportation
dc.subject.otherC1340K Nonlinear control systems
dc.subject.otherC3110B Voltage control
dc.subject.otherC3340H Control of electric power systems
dc.subject.othervoltage control
dc.subject.otherregenerative braking
dc.subject.otherpower factor correction
dc.subject.otherbattery powered vehicles
dc.subject.otherpower convertors
dc.subject.otherpower electronics
dc.subject.othernonlinear control systems
dc.subject.otherregenerative braking
dc.titleReduced component, buck–boost converter for plug‐in electric vehicles with a current sensing‐based efficient NLCC technique
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166186/1/pel2bf03448.pdf
dc.identifier.doi10.1049/iet-pel.2020.0003
dc.identifier.doihttps://dx.doi.org/10.7302/109
dc.identifier.sourceIET Power Electronics
dc.identifier.citedreferenceChinmaya K.A. Singh G.K.: ‘ A single‐stage integrated charger for electric vehicles (evs) and plug ‐ in electric vehicles (pevs) incorporating induction motor drive ’. 44th Annual Conf. of the IEEE Industrial Electronics Society (IECON 2018), Washington, DC, USA, 2018, pp. 954 – 959
dc.identifier.citedreferenceLi G. Zhang X.P.: ‘ Modeling of plug‐in hybrid electric vehicle charging demand in probabilistic power flow calculations ’, IEEE Trans. Smart Grid, 2012, 3, ( 1 ), pp. 492 – 499
dc.identifier.citedreferenceEmadi A. Lee Y.J. Rajashekara K.: ‘ Power electronics and motor drives in electric, hybrid electric, and plug‐in hybrid electric vehicles ’, IEEE Trans. Ind. Electron., 2008, 55, ( 6 ), pp. 2237 – 2245
dc.identifier.citedreferenceMusavi F. Eberle W. Dunford W.G.: ‘ A high‐performance single‐phase bridgeless interleaved pfc converter for plug‐in hybrid electric vehicle battery chargers ’, IEEE Trans. Ind. Appl., 2011, 47, ( 4 ), pp. 1833 – 1843
dc.identifier.citedreferenceOh C.Y. Kim D.H. Woo D.G. et al.: ‘ A high‐efficient nonisolated single‐stage on‐board battery charger for electric vehicles ’, IEEE Trans. Power Electron., 2013, 28, ( 12 ), pp. 5746 – 5757
dc.identifier.citedreferenceSingh A.K. Pathak M.K.: ‘ An improved two‐stage non‐isolated converter for on‐board plug‐in hybrid EV battery charger ’. 2016 IEEE 1st Int. Conf. on Power Electronics,Intelligent Control and Energy Systems (ICPEICES), Delhi, India, 2016, pp. 1 – 6
dc.identifier.citedreferenceYilmaz M. Krein P.T.: ‘ Review of battery charger topologies, charging power levels, and infrastructure for plug‐in electric and hybrid vehicles ’, IEEE Trans. Power Electron., 2013, 28, ( 5 ), pp. 2151 – 2169
dc.identifier.citedreferenceOnar O.C. Kobayashi J. Erb D.C. et al.: ‘ A bidirectional high‐power‐quality grid interface with a novel bidirectional noninverted buck‐boost converter for PHEVs ’, IEEE Trans. Veh. Technol., 2012, 61, ( 5 ), pp. 2018 – 2032
dc.identifier.citedreferenceBendien J.C. Fregien G. van Wyk J.D.: ‘ High‐efficiency on‐board battery charger with transformer isolation, sinusoidal input current and maximum power factor ’, IEE Proc. B ‐ Electr. Power Appl., 1986, 133, ( 4 ), pp. 197 – 204
dc.identifier.citedreferencePahlevaninezhad M. Das P. Drobnik J. et al.: ‘ A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles ’, IEEE Trans. Power Electron., 2012, 27, ( 4 ), pp. 2085 – 2103
dc.identifier.citedreferenceVerma A.K. Singh B. Shahani D.T.: ‘ Grid to vehicle and vehicle to grid energy transfer using single‐phase bidirectional ac‐dc converter and bidirectional dc‐dc converter ’. 2011 Int. Conf. on Energy, Automation and Signal, Bhubaneswar, Odisha, India, 2011, pp. 1 – 5
dc.identifier.citedreferenceShi C. Wang H. Dusmez S. et al.: ‘ A SiC‐based high‐efficiency isolated onboard pev charger with ultrawide dc‐link voltage range ’, IEEE Trans. Ind. Appl., 2017, 53, ( 1 ), pp. 501 – 511
dc.identifier.citedreferenceBist V. Singh B.: ‘ A brushless dc motor drive with power factor correction using isolated zeta converter ’, IEEE Trans. Ind. Inf., 2014, 10, ( 4 ), pp. 2064 – 2072
dc.identifier.citedreferenceBist V. Singh B.: ‘ An adjustable‐speed PFC bridgeless buck ‐boost converter‐fed bldc motor drive ’, IEEE Trans. Ind. Electron., 2014, 61, ( 6 ), pp. 2665 – 2677
dc.identifier.citedreferencePatil D. Agarwal V.: ‘ Compact onboard single‐phase EV battery charger with novel low‐frequency ripple compensator and optimum filter design ’, IEEE Trans. Veh. Technol., 2016, 65, ( 4 ), pp. 1948 – 1956
dc.identifier.citedreferenceEgan M.G. O’Sullivan D.L. Hayes J.G. et al.: ‘ Power‐factor‐corrected single‐stage inductive charger for electric vehicle batteries ’, IEEE Trans. Ind. Electron., 2007, 54, ( 2 ), pp. 1217 – 1226
dc.identifier.citedreferenceKong P.Y. Aziz J.A. Sahid M.R. et al.: ‘ A bridgeless PFC converter for on‐board battery charger ’. 2014 IEEE Conf. on Energy Conversion (CENCON), Johor Bahru, Malaysia, 2014, pp. 383 – 388
dc.identifier.citedreferenceAharon I. Kuperman A.: ‘ Topological overview of powertrains for battery‐powered vehicles with range extenders ’, IEEE Trans. Power Electron., 2011, 26, ( 3 ), pp. 868 – 876
dc.identifier.citedreferenceAhmed A. Khan M.A. Badawy M. et al.: ‘ Performance analysis of bi‐directional dc‐dc converters for electric vehicles and charging infrastructure ’. 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 2013, pp. 1401 – 1408
dc.identifier.citedreferencePark T. Kim T.: ‘ Novel energy conversion system based on a multimode single‐leg power converter ’, IEEE Trans. Power Electron., 2013, 28, ( 1 ), pp. 213 – 220
dc.identifier.citedreferenceQian W. Cha H. Peng F.Z. et al.: ‘ 55‐kW variable 3X DC‐DC converter for plug‐in hybrid electric vehicles ’, IEEE Trans. Power Electron., 2012, 27, ( 4 ), pp. 1668 – 1678
dc.identifier.citedreferenceLee Y.J. Khaligh A. Emadi A.: ‘ Advanced integrated bidirectional AC/DC and DC/DC converter for plug‐in hybrid electric vehicles ’, IEEE Trans. Veh. Technol., 2009, 58, ( 8 ), pp. 3970 – 3980
dc.identifier.citedreferenceDusmez S. Khaligh A.: ‘ A compact and integrated multifunctional power electronic interface for plug‐in electric vehicles ’, IEEE Trans. Power Electron., 2013, 28, ( 12 ), pp. 5690 – 5701
dc.identifier.citedreferenceSingh A.K. Pathak M.K.: ‘ Single‐phase bidirectional ac/dc converter for plug‐in electric vehicles with reduced conduction losses ’, IET Power Electron., 2018, 11, ( 1 ), pp. 140 – 148
dc.identifier.citedreferenceDusmez S. Khaligh A.: ‘ A charge‐nonlinear‐carrier‐controlled reduced‐part single‐stage integrated power electronics interface for automotive applications ’, IEEE Trans. Veh. Technol., 2014, 63, ( 3 ), pp. 1091 – 1103
dc.identifier.citedreferenceSingh A.K. Pathak M.K.: ‘ Single‐stage zeta‐sepic‐based multifunctional integrated converter for plug‐in electric vehicles ’, IET Electr. Syst. Transp., 2018, 8, ( 2 ), pp. 101 – 111
dc.identifier.citedreferenceCocconi assignee A.G.: ‘Combined motor drive and battery recharge system’. 5 341 075, 1994
dc.identifier.citedreferenceRippel assignee W.E.: ‘Integrated traction inverter and battery charger apparatus’. 4 920 475, 1990
dc.identifier.citedreferenceTang Y. Zhu D. Jin C. et al.: ‘ A three‐level quasi‐two‐stage single‐phase PFC converter with flexible output voltage and improved conversion efficiency ’, IEEE Trans. Power Electron., 2015, 30, ( 2 ), pp. 717 – 726
dc.identifier.citedreferenceSingh A.K. Pathak M.K.: ‘ A multi‐functional single‐stage power electronic interface for plug‐in electric vehicles application ’, Electr. Power Compon. Syst., 2018, 46, ( 2 ), pp. 135 – 148
dc.identifier.citedreferencePatil D. Sinha M. Agarwal V.: ‘ A cuk converter based bridgeless topology for high power factor fast battery charger for electric vechicle application ’. 2012 IEEE Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, USA, 2012, pp. 1 – 6
dc.identifier.citedreferenceSingh A.K. Pathak M.K. Rao Y.S.: ‘ A multi‐device front‐end power factor converter for ev battery charger ’. 2017 3rd Int. Conf. on Computational Intelligence Communication Technology (CICT), Ghaziabad, India, 2017, pp. 1 – 6
dc.identifier.citedreferencePahlevaninezhad M. Das P. Drobnik J. et al.: ‘ A ZVS interleaved boost AC/DC converter used in plug‐in electric vehicles ’, IEEE Trans. Power Electron., 2012, 27, ( 8 ), pp. 3513 – 3529
dc.identifier.citedreferenceBai H. Zhang Y. Semanson C. et al.: ‘ Modelling, design and optimisation of a battery charger for plug‐in hybrid electric vehicles ’, IET Electr. Syst. Transp., 2011, 1, ( 1 ), pp. 3 – 10
dc.identifier.citedreferenceMorcos M.M. Dillman N.G. Mersman C.R.: ‘ Battery chargers for electric vehicles ’, IEEE Power Eng. Rev., 2000, 20, ( 11 ), pp. 8 – 11
dc.identifier.citedreferenceMahdavi M. Farzanehfard H.: ‘ Bridgeless SEPIC PFC rectifier with reduced components and conduction losses ’, IEEE Trans. Ind. Electron., 2011, 58, ( 9 ), pp. 4153 – 4160
dc.identifier.citedreferenceKim T.H. Jeong J.B. Lee B.H. et al.: ‘ Analytical study on low‐frequency ripple effect of battery charging ’. 2012 IEEE Vehicle Power and Propulsion Conf., Seoul, Republic of Korea, 2012, pp. 809 – 811
dc.identifier.citedreferenceSingh S. Singh B. Bhuvaneswari G. et al.: ‘ Power factor corrected zeta converter based improved power quality switched mode power supply ’, IEEE Trans. Ind. Electron., 2015, 62, ( 9 ), pp. 5422 – 5433
dc.identifier.citedreferenceVlatkovic V. Borojevic D. Lee F.C.: ‘ Input filter design for power factor correction circuits ’, IEEE Trans. Power Electron., 1996, 11, ( 1 ), pp. 199 – 205
dc.identifier.citedreferenceJang Y. Jovanovic M.M.: ‘ Interleaved boost converter with intrinsic voltage‐doubler characteristic for universal‐line PFC front end ’, IEEE Trans. Power Electron., 2007, 22, ( 4 ), pp. 1394 – 1401
dc.identifier.citedreferenceTang W. Lee F.C. Ridley R.B.: ‘ Small‐signal modeling of average current‐mode control ’, IEEE Trans. Power Electron., 1993, 8, ( 2 ), pp. 112 – 119
dc.identifier.citedreferenceSen G. Elbuluk M.E.: ‘ Voltage and current‐programmed modes in control of the z‐source converter ’, IEEE Trans. Ind. Appl., 2010, 46, ( 2 ), pp. 680 – 686
dc.identifier.citedreferenceYoun H.S. Park J.S. Park K.B. et al.: ‘ A digital predictive peak current control for power factor correction with low‐input current distortion ’, IEEE Trans. Power Electron., 2016, 31, ( 1 ), pp. 900 – 912
dc.identifier.citedreferenceRaviraj V.S.C. Sen P.C.: ‘ Comparative study of proportional‐integral, sliding mode, and fuzzy logic controllers for power converters ’, IEEE Trans. Ind. Appl., 1997, 33, ( 2 ), pp. 518 – 524
dc.identifier.citedreferenceMarvi M. Fotowat‐Ahmady A.: ‘ A fully ZVS critical conduction mode boost pfc ’, IEEE Trans. Power Electron., 2012, 27, ( 4 ), pp. 1958 – 1965
dc.identifier.citedreferenceErickson M.D.R.W.: ‘ Fundamental of power electronics ’ ( Springer, New Delhi, 2005 )
dc.working.doi10.7302/109en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.