Show simple item record

Magnetosphere‐Ionosphere Coupling via Prescribed Field‐Aligned Current Simulated by the TIEGCM

dc.contributor.authorMaute, A.
dc.contributor.authorRichmond, A. D.
dc.contributor.authorLu, G.
dc.contributor.authorKnipp, D. J.
dc.contributor.authorShi, Y.
dc.contributor.authorAnderson, B.
dc.date.accessioned2021-02-04T21:50:29Z
dc.date.available2022-02-04 16:50:24en
dc.date.available2021-02-04T21:50:29Z
dc.date.issued2021-01
dc.identifier.citationMaute, A.; Richmond, A. D.; Lu, G.; Knipp, D. J.; Shi, Y.; Anderson, B. (2021). "Magnetosphere‐Ionosphere Coupling via Prescribed Field‐Aligned Current Simulated by the TIEGCM." Journal of Geophysical Research: Space Physics 126(1): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/166199
dc.description.abstractThe magnetosphere‐ionosphere (MI) coupling is crucial in modeling the thermosphere‐ionosphere (TI) response to geomagnetic activity. In general circulation models (GCMs) the MI coupling is typically realized by specifying the ion convection and auroral particle precipitation patterns from for example, empirical or assimilative models. Assimilative models, such as the Assimilative Mapping of Ionospheric Electrodynamics, have the advantage that the ion convection and auroral particle precipitation patterns are mutually consistent and based on available observations. However, assimilating a large set of diverse data requires expert knowledge and is time consuming. Empirical models, on the other hand, are convenient to use, but do not capture all the observed spatial and temporal variations. With the availability of Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) data, there is an opportunity for employing field‐aligned currents (FAC) in GCMs to represent the MI coupling. In this study, we will introduce a new method which enables us to use observed FAC in GCMs and solve for the interhemispherically asymmetric electric potential distribution. We compare Thermosphere‐Ionosphere‐Electrodynamics General Circulation Model (TIEGCM) simulations of a geomagnetic storm period using the new approach and two other often‐used methods for specifying MI coupling based on empirical and assimilative high latitude electric potentials. The comparison shows general similarities of the TI storm time response and improved temporal variability of the new method compared to using empirical models, but results also illustrate substantial differences due to our uncertain knowledge about the MI coupling process.Plain Language SummaryOur society is increasingly dependent on space assets for communication and navigation and ground infrastructures such as power grids and gas pipelines. The space environment is highly variable. Especially during geomagnetic storm large amount of energy enter Earth’s upper atmosphere along field‐lines from the magnetosphere and can drastically change the upper atmosphere, which can become hazardous for satellites and ground infrastructures. Numerical models are employed to simulate Earth’s upper atmosphere during geomagnetic storms and describing accurately the coupling to the magnetosphere is crucial. In numerical models the coupling is typically realized by specifying the high latitude ion drift and auroral particle precipitation patterns from for example, empirical or assimilative models. Assimilative models realistically describe the energy input since they ingest available observations but they require expert knowledge to run. Empirical models are convenient to use and describe average conditions and do not necessarily capture all the observed variations. With the availability of observed field‐aligned currents (FAC) there is the opportunity to represent the coupling via FAC. We introduce a new method using observed FAC in numerical models and compare results of a geomagnetic storm period using the new approach to using empirical and assimilative models for specifying coupling.Key PointsPresent new approach to prescribe observed field‐aligned current in the Thermosphere‐Ionosphere‐Electrodynamics General Circulation ModelPresent technique to solve for interhemispherically asymmetric electric potentialThe new approach increases the temporal thermosphere‐ionosphere‐variation compared to empirical models
dc.publisherNational Center for Atmospheric Research
dc.publisherWiley Periodicals, Inc.
dc.subject.othergeneral circulation model
dc.subject.otherinterhemispherically asymmetric electric potential
dc.subject.othermagnetosphere‐ionosphere coupling
dc.subject.otherobserved field‐aligned current
dc.titleMagnetosphere‐Ionosphere Coupling via Prescribed Field‐Aligned Current Simulated by the TIEGCM
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166199/1/jgra56133.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166199/2/jgra56133_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166199/3/2020JA028665-T-sup-0001-Text_SI-S01.pdf
dc.identifier.doi10.1029/2020JA028665
dc.identifier.doihttps://dx.doi.org/10.7302/122
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRoble, R., Ridley, E., & Richmond, A. ( 1988 ). A coupled thermosphere/ionosphere general circulation model. Geophysical Research Letters, 15, 1325 – 1328.
dc.identifier.citedreferenceRichards, P., Fennelly, J., & Torr, D. ( 1994 ). EUVAC: A solar EUV flux model for aeronomic calculations. Journal of Geophysical Research, 99, 8981 – 1992.
dc.identifier.citedreferenceRichmond, A. ( 1992 ). Assimilative mapping of ionospheric electrodynamics. Advances in Space Research, 12 ( 6 ), 59 – 68.
dc.identifier.citedreferenceRichmond, A. ( 1995 ). Ionospheric Electrodynamics Using Magnetic Apex Coordinates. Journal of Geomagnetism and Geoelectricity, 47 ( 2 ), 191 – 212.
dc.identifier.citedreferenceRichmond, A., & Maute, A. ( 2013 ). Ionospheric electrodynamics modeling. In R. S. J. D. Huba, & G. Khazanov (Eds.), Modeling the ionosphere‐thermosphere (Vol. 201 ). Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118704417.ch610.1029/2012GM001331 AGU Geophysical Monograph Series.
dc.identifier.citedreferenceRichmond, A., & Maute, A. ( 2014 ). Ionospheric electrodynamics modeling. Modeling the Ionosphere‐Thermosphere System, 57 – 71. https://doi.org/10.1002/9781118704417.ch6
dc.identifier.citedreferenceRichmond, A., Ridley, E. C., & Roble, R. G. ( 1992 ). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19 ( 6 ), 601 – 604. https://doi.org/10.1029/92GL00401
dc.identifier.citedreferenceRoble, R., & Ridley, E. ( 1987 ). An auroral model for the NCAR thermospheric general circulation model (TGCM). Annales Geophysicae, 5A, 369 – 382.
dc.identifier.citedreferenceRodger, A. S., Wrenn, G., & Rishbeth, H. ( 1989 ). Geomagnetic storms in the antarctic F‐region. II. Physical interpretation. Journal of Atmospheric and Terrestrial Physics, 51 ( 11–12 ), 851 – 866. https://doi.org/10.1016/0021-9169(89)90002-0
dc.identifier.citedreferenceShi, Y., Knipp, D., Matsuo, T., Kilcommons, L., & Anderson, B. ( 2020a ). Event studies of high‐latitude field‐aligned currents (FACs) with inverse and assimilative analysis of AMPERE magnetometer data. Journal of Geophysical Research: Space Physics. 125, e2019JA027265
dc.identifier.citedreferenceShi, Y., Knipp, D., Matsuo, T., Kilcommons, L., & Anderson, B. ( 2020b ). Modes of field‐aligned currents (FACs) variability and their hemispheric asymmetry revealed by inverse and assimilative analysis of Iridium magnetometer data. Journal of Geophysical Research: Space Physics. 125, e2019JA027265.
dc.identifier.citedreferenceStankov, S., Stegen, K., & Warnant, R. ( 2010 ). Seasonal variations of storm‐time TEC at European middle latitudes. Advances in Space Research, 46 ( 10 ), 1318 – 1325. https://doi.org/10.1016/j.asr.2010.07.017
dc.identifier.citedreferenceSutton, E. K. ( 2018 ). A new method of physics‐based data assimilation for the quiet and disturbed thermosphere. Space Weather, 16 ( 6 ), 736 – 753.
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C. R., De Zeeuw, D. L., et al. ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110 ( A12 ). A05207. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceWaters, C. L., Anderson, B. J., & Liou, K. ( 2001 ). Estimation of global field aligned currents using the Iridium system magnetometer data. Geophysical Research Letters, 28 ( 11 ), 2165 – 2168.
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110 ( A5 ). https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceWilder, F. D., Crowley, G., Anderson, B. J., & Richmond, A. D. ( 2012 ). Intense dayside Joule heating during the 5 April 2010 geomagnetic storm recovery phase observed by AMIE and AMPERE. Journal of Geophysical Research, 117 ( A5 ). https://doi.org/10.1029/2011JA017262
dc.identifier.citedreferenceWiltberger, M. ( 2015 ). Review of global simulation studies of effect of ionospheric outflow on magnetosphere‐ionosphere system dynamics. In Magnetotails in the solar system (Vol. 207; pp. 373 – 392 ).
dc.identifier.citedreferenceWiltberger, M., Wang, W., Burns, A., Solomon, S., Lyon, J., & Goodrich, C. ( 2004 ). Initial results from the coupled magnetosphere ionosphere thermosphere model: magnetospheric and ionospheric responses. Journal of Atmospheric and Solar‐Terrestrial Physics, 66 ( 15 ), 1411 – 1423. https://doi.org/10.1016/j.jastp.2004.03.026
dc.identifier.citedreferenceWinglee, R., Chua, D., Brittnacher, M., Parks, G., & Lu, G. ( 2002 ). Global impact of ionospheric outflows on the dynamics of the magnetosphere and cross‐polar cap potential. Journal of Geophysical Research, 107 ( A9 ), SMP11. https://doi.org/10.1029/2001JA000214
dc.identifier.citedreferenceYang, J., Toffoletto, F., Lu, G., & Wiltberger, M. ( 2014 ). RCM‐E and AMIE studies of the Harang reversal formation during a steady magnetospheric convection event. Journal of Geophysical Research: Space Physics, 119 ( 9 ), 7228 – 7242. https://doi.org/10.1002/2014JA020207
dc.identifier.citedreferenceZhang, X., Forbes, J. M., & Hagan, M. E. ( 2010a ). Longitudinal variation of tides in the MLT region: 1. Tides driven by tropospheric net radiative heating. Journal of Geophysical Research, 115 ( A6 ). A06316. https://doi.org/10.1029/2009JA014897
dc.identifier.citedreferenceZhang, X., Forbes, J. M., & Hagan, M. E. ( 2010b ). Longitudinal variation of tides in the MLT Region: 2. relative effects of solar radiative and latent heating. Journal of Geophysical Research, 115 ( A6 ). A06317. https://doi.org/10.1029/2009JA014898
dc.identifier.citedreferenceZhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., & Wiltberger, M. ( 2019 ). GAMERA: A three‐dimensional finite‐volume MHD solver for non‐orthogonal curvilinear geometries. The Astrophysical Journal Supplement Series, 244 ( 1 ), 20.
dc.identifier.citedreferenceZhu, Q., Deng, Y., Richmond, A., Maute, A., Chen, Y.‐J., Hairston, M., et al. ( 2020 ). Impacts of binning methods on high‐latitude electrodynamic forcing: static vs boundary‐oriented binning methods. Journal of Geophysical Research: Space Physics, 125 ( 1 ). e2019JA027270. https://doi.org/10.1029/2019JA027270
dc.identifier.citedreferenceAnderson, B., Korth, H., Waters, C., Green, D., Merkin, V., Barnes, R., & Dyrud, L. ( 2014 ). Development of large‐scale Birkeland currents determined from the active magnetosphere and planetary electrodynamics response experiment. Geophysical Research Letters, 41 ( 9 ), 3017 – 3025. https://doi.org/10.1002/2014GL059941
dc.identifier.citedreferenceAnderson, B., Ohtani, S.‐I., Korth, H., & Ukhorskiy, A. ( 2005 ). Storm time dawn‐dusk asymmetry of the large‐scale Birkeland currents. Journal of Geophysical Research, 110 ( A12 ). https://doi.org/10.1029/2005JA011246
dc.identifier.citedreferenceAnderson, B., Takahashi, K., Kamei, T., Waters, C. L., & Toth, B. A. ( 2002 ). Birkeland current system key parameters derived from Iridium observations: Method and initial validation results. Journal of Geophysical Research, 107 ( A6 ), SMP111 – SMP1113. https://doi.org/10.1029/2001JA000080
dc.identifier.citedreferenceAnderson, B., Takahashi, K., & Toth, B. A. ( 2000 ). Sensing global Birkeland currents with Iridium engineering magnetometer data. Geophysical Research Letters, 27 ( 24 ), 4045 – 4048. https://doi.org/10.1029/2000GL000094
dc.identifier.citedreferenceAraujo‐Pradere, E., Fuller‐Rowell, T., & Spencer, P. ( 2006 ). Consistent features of TEC changes during ionospheric storms. Journal of Atmospheric and Solar‐Terrestrial Physics, 68 ( 16 ), 1834 – 1842. https://doi.org/10.1016/j.jastp.2006.06.004
dc.identifier.citedreferenceBerchem, J., Richard, R., Escoubet, C., Wing, S., & Pitout, F. ( 2016 ). Asymmetrical response of dayside ion precipitation to a large rotation of the IMF. Journal of Geophysical Research: Space Physics, 121 ( 1 ), 263 – 273. https://doi.org/10.1002/2015JA021969
dc.identifier.citedreferenceClausen, L. B. N., Baker, J. B. H., Ruohoniemi, J. M., Milan, S. E., & Anderson, B. J. ( 2012 ). Dynamics of the region 1 Birkeland current oval derived from the Active magnetosphere and planetary electrodynamics response experiment (AMPERE). Journal of Geophysical Research, 117 ( A6 ). https://doi.org/10.1029/2012JA017666
dc.identifier.citedreferenceCodrescu, M., Fuller‐Rowell, T. J., & Foster, J. C. ( 1995 ). On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere. Geophysical Research Letters, 22 ( 17 ), 2393 – 2396. https://doi.org/10.1029/95GL01909
dc.identifier.citedreferenceCousins, E., Matsuo, T., & Richmond, A. D. ( 2013 ). SuperDARN assimilative mapping. Journal of Geophysical Research: Space Physics, 118 ( 12 ), 7954 – 7962. https://doi.org/10.1002/2013JA019321
dc.identifier.citedreferenceCousins, E., Matsuo, T., & Richmond, A. D. ( 2015 ). Mapping high‐latitude ionospheric electrodynamics with SuperDARN and AMPERE. Journal of Geophysical Research: Space Physics, 120 ( 7 ), 5854 – 5870. https://doi.org/10.1002/2014JA020463
dc.identifier.citedreferenceCousins, E., Matsuo, T., Richmond, A. D., & Anderson, B. J. ( 2015 ). Dominant modes of variability in large‐scale Birkeland currents. Journal of Geophysical Research: Space Physics, 120 ( 8 ), 6722 – 6735. https://doi.org/10.1002/2014JA020462
dc.identifier.citedreferenceCoxon, J. C., Milan, S. E., Carter, J. A., Clausen, L. B. N., Anderson, B. J., & Korth, H. ( 2016 ). Seasonal and diurnal variations in AMPERE observations of the Birkeland currents compared to modeled results. Journal of Geophysical Research: Space Physics, 121, 4027 – 4040. https://doi.org/10.1002/2015JA022050
dc.identifier.citedreferenceDickinson, R. E., Ridley, E., & Roble, R. ( 1984 ). Thermospheric general circulation with coupled dynamics and composition. Journal of the Atmospheric Sciences, 41 ( 2 ), 205 – 219.
dc.identifier.citedreferenceEmery, B., Roble, R., Ridley, E., Richmond, A., Knipp, D., Crowley, G., et al. ( 2012 ). Parameterization of the ion convection and the auroral oval in the NCAR thermospheric general circulation models (Technical Report). Boulder, CO: National Center for Atmospheric Research. https://doi.org/10.5065/D6N29TXZ
dc.identifier.citedreferenceFörster, M., & Haaland, S. ( 2015 ). Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited. Journal of Geophysical Research: Space Physics, 120 ( 7 ), 5805 – 5823. https://doi.org/10.1002/2014JA020774
dc.identifier.citedreferenceFujii, R., Iijima, T., Potemra, T. A., & Sugiura, M. ( 1981 ). Seasonal dependence of large‐scale Birkeland currents. Geophysical Research Letters, 8 ( 10 ), 1103 – 1106.
dc.identifier.citedreferenceFukushima, N. ( 1979 ). Electric potential difference between conjugate points in middle latitudes caused by asymmetric dynamo in the ionosphere. Journal of Geomagnetism and Geoelectricity, 31, 401 – 409.
dc.identifier.citedreferenceFuller‐Rowell, T. J., Codrescu, M. V., Moffett, R. J., & Quegan, S. ( 1994 ). Response of the thermosphere and ionosphere to geomagnetic storms. Journal of Geophysical Research, 99 ( A3 ), 3893 – 3914. https://doi.org/10.1029/93JA02015
dc.identifier.citedreferenceFuller‐Rowell, T. J., Codrescu, M. V., Rishbeth, H., Moffett, R. J., & Quegan, S. ( 1996 ). On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. Journal of Geophysical Research, 101 ( A2 ), 2343 – 2353. https://doi.org/10.1029/95JA01614
dc.identifier.citedreferenceFuller‐Rowell, T. J., & Evans, D. S. ( 1987 ). Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 – 7618. https://doi.org/10.1029/JA092iA07p07606
dc.identifier.citedreferenceHeelis, R. A., Lowell, J. K., & Spiro, R. W. ( 1982 ). A model of the high‐latitude ionospheric convection pattern. Journal of Geophysical Research, 87 ( A8 ), 6339 – 6345. https://doi.org/10.1029/JA087iA08p06339
dc.identifier.citedreferenceHeelis, R. A., & Maute, A. ( 2020 ). Challenges to understanding the Earth’s ionosphere and thermosphere. Journal of Geophysical Research: Space Physics, 125. e2019JA027497. https://doi.org/10.1029/2019JA027497
dc.identifier.citedreferenceKorth, H., Anderson, B. J., Frey, H. U., & Waters, C. L. ( 2005 ). High‐latitude electromagnetic and particle energy flux during an event with sustained strongly northward IMF. Annales Geophysicae, 23 ( 4 ), 1295 – 1310. Retrieved from https://www.ann-geophys.net/23/1295/2005/ https://doi.org/10.5194/angeo-23-1295-2005
dc.identifier.citedreferenceLei, J., Zhu, Q., Wang, W., Burns, A. G., Zhao, B., Luan, X., et al. ( 2015 ). Response of the topside and bottomside ionosphere at low and middle latitudes to the October 2003 superstorms. Journal of Geophysical Research: Space Physics, 120 ( 8 ), 6974 – 6986. https://doi.org/10.1002/2015JA021310
dc.identifier.citedreferenceLu, G. ( 2017 ). Large scale high‐latitude ionospheric electrodynamic fields and currents. Space Science Reviews, 206 ( 1 ), 431 – 450. https://doi.org/10.1007/s11214-016-0269-9
dc.identifier.citedreferenceLuan, X., Wang, W., Burns, A., & Dou, X. ( 2017 ). Solar cycle variations of thermospheric O/N2 longitudinal pattern from TIMED/GUVI. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2605 – 2618. https://doi.org/10.1002/2016JA023696
dc.identifier.citedreferenceLu, G., Hagan, M. E., Häusler, K., Doornbos, E., Bruinsma, S., Anderson, B. J., & Korth, H. ( 2014 ). Global ionospheric and thermospheric response to the 5 April 2010 geomagnetic storm: An integrated data‐model investigation. Journal of Geophysical Research: Space Physics, 119 ( 12 ), 10358 – 10375. https://doi.org/10.1002/2014JA020555
dc.identifier.citedreferenceLühr, H., Kervalishvili, G., Michaelis, I., Rauberg, J., Ritter, P., Park, J., et al. ( 2015 ). The interhemispheric and F region dynamo currents revisited with the Swarm constellation. Geophysical Research Letters, 42 ( 9 ), 3069 – 3075. https://doi.org/10.1002/2015GL063662
dc.identifier.citedreferenceLukianova, R., Hanuise, C., & Christiansen, F. ( 2008 ). Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC‐based convection model. Journal of Atmospheric and Solar‐Terrestrial Physics, 70 ( 18 ), 2324 – 2335.
dc.identifier.citedreferenceLu, G., Richmond, A., Emery, B., & Roble, R. ( 1995 ). Magnetosphere‐ionosphere‐thermosphere coupling: Effect of neutral winds on energy transfer and field‐aligned current. Journal of Geophysical Research, 100 ( A10 ), 19643 – 19659.
dc.identifier.citedreferenceLu, G., Richmond, A. D., Roble, R. G., & Emery, B. A. ( 2001 ). Coexistence of ionospheric positive and negative storm phases under northern winter conditions: A case study. Journal of Geophysical Research, 106 ( A11 ), 24493 – 24504. https://doi.org/10.1029/2001JA000003
dc.identifier.citedreferenceMarsal, S. ( 2015 ). Conductivities consistent with Birkeland currents in the AMPERE‐driven TIE‐GCM. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 8045 – 8065. https://doi.org/10.1002/2015JA021385
dc.identifier.citedreferenceMarsal, S., Richmond, A., Maute, A., & Anderson, B. ( 2012 ). Forcing the TIEGCM model with Birkeland currents from the active magnetosphere and planetary electrodynamics response experiment. Journal of Geophysical Research, 117, A06308. https://doi.org/10.1029/2011JA017416
dc.identifier.citedreferenceMatsuo, T., Knipp, D. J., Richmond, A. D., Kilcommons, L., & Anderson, B. J. ( 2015 ). Inverse procedure for high‐latitude ionospheric electrodynamics: Analysis of satellite‐borne magnetometer data. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 5241 – 5251. https://doi.org/10.1002/2014JA020565
dc.identifier.citedreferenceNishimura, T., Deng, Y., Lyons, L. R., McGranaghan, R. M., & Zettergren, M. D. ( 2020 ). Multi‐scale dynamics in the high‐latitude ionosphere. In Solar/heliosphere 3: Advances in ionospheric research. Wiley Online Library.
dc.identifier.citedreferencePark, J., Lühr, H., & Min, K. W. ( 2011 ). Climatology of the inter‐hemispheric field‐aligned current system in the equatorial ionosphere as observed by CHAMP. Annales Geophysicae, 29, 573 – 582. https://doi.org/10.5194/angeo-29-573-2011
dc.identifier.citedreferencePettigrew, E., Shepherd, S., & Ruohoniemi, J. ( 2010 ). Climatological patterns of high‐latitude convection in the northern and southern hemispheres: Dipole tilt dependencies and interhemispheric comparisons. Journal of Geophysical Research, 115 ( A7 ).
dc.identifier.citedreferencePicone, J. M., Hedin, A. E., Drob, D. P., & Aikin, A. C. ( 2002 ). NRLMSISE‐00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 107 ( A12 ). 1468. https://doi.org/10.1029/2002JA009430
dc.identifier.citedreferenceQian, L., Burns, A. G., Emery, B. A., Foster, B., Lu, G., Maute, A., et al. ( 2014 ). The NCAR TIE‐GCM: A community model of the coupled thermosphere/ionosphere system. Geophysical Monograph Series, 201, 73 – 83.
dc.identifier.citedreferenceRaeder, J., Wang, Y., & Fuller‐Rowell, T. J. ( 2001 ). Geomagnetic storm simulation with a coupled magnetosphere‐ionosphere‐thermosphere model. Washington DC American Geophysical Union Geophysical Monograph Series, 125, 377 – 384.
dc.working.doi10.7302/122en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.