Show simple item record

A targeted phylogenetic approach helps explain New World functional diversity patterns of two eudicot lineages

dc.contributor.authorFigueroa, Hector
dc.contributor.authorSmith, Stephen A.
dc.date.accessioned2021-02-04T21:51:00Z
dc.date.available2022-02-04 16:50:54en
dc.date.available2021-02-04T21:51:00Z
dc.date.issued2021-01
dc.identifier.citationFigueroa, Hector; Smith, Stephen A. (2021). "A targeted phylogenetic approach helps explain New World functional diversity patterns of two eudicot lineages." Journal of Biogeography (1): 202-215.
dc.identifier.issn0305-0270
dc.identifier.issn1365-2699
dc.identifier.urihttps://hdl.handle.net/2027.42/166208
dc.description.abstractAimLarge‐scale functional diversity studies typically examine isolated traits, often without phylogenetic context. Here, we integrate data from five life‐history traits with phylogeny and occurrence records to assess: (a) correlated latitudinal gradients of trait combinations; (b) which traits show phylogenetic conservatism and (c) quantitative, clade‐specific differences in trait syndromes, illustrating the phylogenetic scale of observable variation in ecological strategies.LocationThe Americas.TaxonEricales (Asterids) and Fabales (Rosids).MethodsWe used publicly available trait data sets on height, seed mass, wood density, leaf mass per area (LMA) and growth form, an open‐source phylogeny, and georeferenced occurrence records to investigate functional diversity patterns. We employed phylogenetic generalized least squares and phylogenetic principal components analyses (pPCA) to assess correlated trait evolution and quantify the trait syndrome, respectively. We employed the InfoMap Ecoregions web app to cluster species by bioregions. We used standard statistical tests and randomization simulations to assess statistical significance of results.ResultsEricales and Fabales exhibited a biogeographically consistent, phylogenetically conserved trait syndrome. Moving poleward, species exhibited progressively smaller trait values and more herbaceous and shrubby growth forms (except for LMA, which showed no consistent pattern). We quantified latitudinal variation in this trait syndrome using pPCA, and provide evidence for correlated trait evolution.Main conclusionsWe demonstrate a functional trait syndrome involving height, seed mass, wood density and growth form, but not LMA. Functional trait values showed consistent latitudinal patterns and evidence of correlated evolution, suggesting an underlying ecological strategy. Furthermore, the two clades showed quantitative differences in the manifestation of this trait syndrome. Variation in the syndrome was best observed among species from con‐ordinal families. We interpret this trait syndrome as a strategy of resource acquisition in which habitats with relatively greater soil nutrient content and a shorter growing season favour shorter stature, lower seed mass and wood density, and shrubby or herbaceous growth form.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEricales
dc.subject.otherFabales
dc.subject.otherfunctional diversity
dc.subject.otherlatitudinal gradient
dc.subject.otherlife‐history traits
dc.subject.othercold tolerance
dc.subject.otherangiosperms
dc.titleA targeted phylogenetic approach helps explain New World functional diversity patterns of two eudicot lineages
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeography and Maps
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166208/1/jbi13993-sup-0008-Suppinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166208/2/jbi13993.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166208/3/jbi13993-sup-0006-FigS6.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166208/4/jbi13993-sup-0004-FigS4.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166208/5/jbi13993_am.pdf
dc.identifier.doi10.1111/jbi.13993
dc.identifier.doihttps://dx.doi.org/10.7302/131
dc.identifier.sourceJournal of Biogeography
dc.identifier.citedreferenceter Steege, H., Pitman, N. C. A., Phillips, O. L., Chave, J., Sabatier, D., Duque, A., Molino, J.‐F., Prévost, M.‐F., Spichiger, R., Castellanos, H., von Hildebrand, P., & Vásquez, R. ( 2006 ). Continental‐scale patterns of canopy tree composition and function across Amazonia. Nature, 443 ( 7110 ), 444 – 447. https://doi.org/10.1038/nature05134
dc.identifier.citedreferenceRevell, L. J. ( 2012 ). phytools: An R package for phylogenetic comparative biology (and other things): Phytools: R package. Methods in Ecology and Evolution, 3 ( 2 ), 217 – 223. https://doi.org/10.1111/j.2041‐210X.2011.00169.x
dc.identifier.citedreferenceRose, J. P., Kleist, T. J., Löfstrand, S. D., Drew, B. T., Schönenberger, J., & Sytsma, K. J. ( 2018 ). Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. Molecular Phylogenetics and Evolution, 122, 59 – 79. https://doi.org/10.1016/j.ympev.2018.01.014
dc.identifier.citedreferenceRosvall, M., & Bergstrom, C. T. ( 2008 ). Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America, 105 ( 4 ), 1118 – 1123. https://doi.org/10.1073/pnas.0706851105
dc.identifier.citedreferenceSedio, B. E., Parker, J. D., McMahon, S. M., & Wright, S. J. ( 2018 ). Comparative metabolomics of forest communities: species differences in foliar chemistry aregreater in the tropics. https://doi.org/10.1101/271361
dc.identifier.citedreferenceSegovia, R. A., Pennington, R. T., Baker, T. R., de Souza, F. C., Neves, D. M., Davis, C. C., Armesto, J. J., Olivera‐Filho, A. T., & Dexter, K. G. ( 2020 ). Freezing and water availability structure the evolutionary diversity of trees across the Americas. Science Advances, 6 ( 19 ), eaaz5373. https://doi.org/10.1126/sciadv.aaz5373
dc.identifier.citedreferenceSmith, S. A., & Brown, J. W. ( 2018 ). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105 ( 3 ), 302 – 314. https://doi.org/10.1002/ajb2.1019
dc.identifier.citedreferenceSprent, J. ( 2009 ). Legume nodulation: A global perspective. Wiley‐Blackwell.
dc.identifier.citedreferenceStevens, P. F. ( 2001 ). Angiosperm phylogeny website. Version 14, July 2017 [and more or less continuously updated since].
dc.identifier.citedreferenceSwenson, N. G., Erickson, D. L., Mi, X., Bourg, N. A., Forero‐Montaña, J., Ge, X., Howe, R., Lake, J. K., Liu, X., Ma, K., Pei, N., Thompson, J., Uriarte, M., Wolf, A., Wright, S. J., Ye, W., Zhang, J., Zimmerman, J. K., & Kress, W. J. ( 2012 ). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93 ( sp8 ), S112 – S125. https://doi.org/10.1890/11‐0402.1
dc.identifier.citedreferenceSwenson, N. G., & Weiser, M. D. ( 2010 ). Plant geography upon the basis of functional traits: An example from eastern North American trees. Ecology, 91 ( 8 ), 2234 – 2241. https://doi.org/10.1890/09‐1743.1
dc.identifier.citedreferenceThe Angiosperm Phylogeny Group. ( 2016 ). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181 ( 1 ), 1 – 20. https://doi.org/10.1111/boj.12385
dc.identifier.citedreferenceVan Andel, T. ( 1994 ). New views on an old planet: A history of global change ( 2nd ed. ). Cambridge University Press.
dc.identifier.citedreferenceWang, L.‐G., Lam, T.‐T.‐Y., Xu, S., Dai, Z., Zhou, L., Feng, T., Guo, P., Dunn, C. W., Jones, B. R., Bradley, T., Zhu, H., Guan, Y., Jiang, Y., & Yu, G. ( 2020 ). treeio: An R package for phylogenetic tree input and output with richly annotated and associated data. Molecular Biology and Evolution, 37 ( 2 ), 599 – 603. https://doi.org/10.1093/molbev/msz240
dc.identifier.citedreferenceWeiner, J. ( 2015 ). Pca3d: Three dimensional PCA plots. R package version 0.8, 484.
dc.identifier.citedreferenceWestoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. ( 2002 ). Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33 ( 1 ), 125 – 159. https://doi.org/10.1146/annurev.ecolsys.33.010802.150452
dc.identifier.citedreferenceWickham, H. ( 2016 ). ggplot2: Elegant graphics for data analysis. Springer‐Verlag.
dc.identifier.citedreferenceWiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Davies, T. J., Grytnes, J.‐A., Harrison, S. P., Hawkins, B. A., Holt, R. D., McCain, C. M., & Stephens, P. R. ( 2010 ). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13 ( 10 ), 1310 – 1324. https://doi.org/10.1111/j.1461‐0248.2010.01515.x
dc.identifier.citedreferenceWikström, N., Savolainen, V., & Chase, M. W. ( 2001 ). Evolution of the angiosperms: Calibrating the family tree. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268 ( 1482 ), 2211 – 2220. https://doi.org/10.1098/rspb.2001.1782
dc.identifier.citedreferenceWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender‐Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428 ( 6985 ), 821 – 827. https://doi.org/10.1038/nature02403
dc.identifier.citedreferenceWright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz‐Jaen, M. C., Salvador, C. M., & Zanne, A. E. ( 2010 ). Functional traits and the growth–mortality trade‐off in tropical trees. Ecology, 91 ( 12 ), 3664 – 3674. https://doi.org/10.1890/09‐2335.1
dc.identifier.citedreferenceYu, G., Smith, D. K., Zhu, H., Guan, Y., & Lam, T.‐T.‐Y. ( 2017 ). ggtree: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8 ( 1 ), 28 – 36. https://doi.org/10.1111/2041‐210X.12628
dc.identifier.citedreferenceZanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G., McGlinn, D. J., O’Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E., Stevens, P. F., Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A., Govaerts, R., … Beaulieu, J. M. ( 2014 ). Three keys to the radiation of angiosperms into freezing environments. Nature, 506 ( 7486 ), 89 – 92. https://doi.org/10.1038/nature12872
dc.identifier.citedreferenceZizka, A., Silvestro, D., Andermann, T., Azevedo, J., Duarte Ritter, C., Edler, D., Farooq, H., Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., & Antonelli, A. ( 2019 ). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10 ( 5 ), 744 – 751. https://doi.org/10.1111/2041‐210X.13152
dc.identifier.citedreferenceBlomberg, S. P., Garland, T., & Ives, A. R. ( 2003 ). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57 ( 4 ), 717 – 745. https://doi.org/10.1111/j.0014‐3820.2003.tb00285.x
dc.identifier.citedreferenceChadwick, O. A., Derry, L. A., Vitousek, P. M., Huebert, B. J., & Hedin, L. O. ( 1999 ). Changing sources of nutrients during four million years of ecosystem development. Nature, 397 ( 6719 ), 491 – 497. https://doi.org/10.1038/17276
dc.identifier.citedreferenceChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. ( 2009 ). Towards a worldwide wood economics spectrum. Ecology Letters, 12 ( 4 ), 351 – 366. https://doi.org/10.1111/j.1461‐0248.2009.01285.x
dc.identifier.citedreferenceConti, G., & Díaz, S. ( 2013 ). Plant functional diversity and carbon storage—An empirical test in semi‐arid forest ecosystems. Journal of Ecology, 101 ( 1 ), 18 – 28. https://doi.org/10.1111/1365‐2745.12012
dc.identifier.citedreferenceDick, C. W., & Pennington, R. T. ( 2019 ). History and geography of neotropical tree diversity. Annual Review of Ecology, Evolution, and Systematics, 50 ( 1 ), 279 – 301. https://doi.org/10.1146/annurev‐ecolsys‐110617‐062314
dc.identifier.citedreferenceEdler, D., Guedes, T., Zizka, A., Rosvall, M., & Antonelli, A. ( 2016 ). Infomap bioregions: Interactive mapping of biogeographical regions from species distributions. Systematic Biology, 66, 197 – 204. https://doi.org/10.1093/sysbio/syw087
dc.identifier.citedreferenceFick, S. E., & Hijmans, R. J. ( 2017 ). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 ( 12 ), 4302 – 4315. https://doi.org/10.1002/joc.5086
dc.identifier.citedreferenceFriis, E. M., Crane, P. R., & Pedersen, K. R. ( 2011 ). Early flowers and angiosperm evolution. Cambridge University Press.
dc.identifier.citedreferenceGraham, A. ( 2011 ). A natural history of the new world. University of Chicago Press.
dc.identifier.citedreferenceGrime, J. P. ( 2006 ). Plant strategies, vegetation processes, and ecosystem properties ( 2nd ed. ). John Wiley & Sons Inc.
dc.identifier.citedreferenceHawkins, B. A., Rueda, M., Rangel, T. F., Field, R., & Diniz‐Filho, J. A. F. ( 2014 ). Community phylogenetics at the biogeographical scale: Cold tolerance, niche conservatism and the structure of North American forests. Journal of Biogeography, 41 ( 1 ), 23 – 38. https://doi.org/10.1111/jbi.12171
dc.identifier.citedreferenceHedwall, P.‐O., Brunet, J., Nordin, A., & Bergh, J. ( 2013 ). Changes in the abundance of keystone forest floor species in response to changes of forest structure. Journal of Vegetation Science, 24 ( 2 ), 296 – 306. https://doi.org/10.1111/j.1654‐1103.2012.01457.x
dc.identifier.citedreferenceKahle, D., & Wickham, H. ( 2013 ). ggmap: Spatial visualization with ggplot2. The R Journal, 5 ( 1 ), 144. https://doi.org/10.32614/RJ‐2013‐014
dc.identifier.citedreferenceKattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D. A., Aakala, T., Abedi, M., Acosta, A. T. R., Adamidis, G. C., Adamson, K., Aiba, M., Albert, C. H., Alcántara, J. M., Alcázar C, C., Aleixo, I., Ali, H., … Wirth, C. ( 2020 ). TRY plant trait database – Enhanced coverage and open access. Global Change Biology, 26, 119 – 188. https://doi.org/10.1111/gcb.14904
dc.identifier.citedreferenceLi, H.‐L., Wang, W., Mortimer, P. E., Li, R.‐Q., Li, D.‐Z., Hyde, K. D., Xu, J.‐C., Soltis, D. E., & Chen, Z.‐D. ( 2015 ). Large‐scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen‐fixing symbioses in angiosperms associated with climate change. Scientific Reports, 5 ( 1 ), 14023. https://doi.org/10.1038/srep14023
dc.identifier.citedreferenceMagallón, S., Sánchez‐Reyes, L. L., & Gómez‐Acevedo, S. L. ( 2019 ). Thirty clues to the exceptional diversification of flowering plants. Annals of Botany, 123, 491 – 503. https://doi.org/10.1093/aob/mcy182
dc.identifier.citedreferenceMoles, A. T. ( 2018 ). Being John Harper: Using evolutionary ideas to improve understanding of global patterns in plant traits. Journal of Ecology, 106 ( 1 ), 1 – 18. https://doi.org/10.1111/1365‐2745.12887
dc.identifier.citedreferenceMoles, A. T., Ackerly, D. D., Tweddle, J. C., Dickie, J. B., Smith, R., Leishman, M. R., Mayfield, M. M., Pitman, A., Wood, J. T., & Westoby, M. ( 2007 ). Global patterns in seed size. Global Ecology and Biogeography, 16 ( 1 ), 109 – 116. https://doi.org/10.1111/j.1466‐8238.2006.00259.x
dc.identifier.citedreferenceMoles, A. T., Ackerly, D. D., Webb, C. O., Tweddle, J. C., Dickie, J. B., & Westoby, M. ( 2005 ). A brief history of seed size. Science, 307 ( 5709 ), 576 – 580. https://doi.org/10.1126/science.1104863
dc.identifier.citedreferenceMoles, A. T., & Leishman, M. R. ( 2008 ). The seedling as part of a plant’s life history strategy. In M. A. Leck, V. T. Parker, & R. L. Simpson (Eds.), Seedling ecology and evolution (pp. 217 – 238 ). Cambridge University Press. https://doi.org/10.1017/CBO9780511815133.012
dc.identifier.citedreferenceMoles, A. T., Warton, D. I., Warman, L., Swenson, N. G., Laffan, S. W., Zanne, A. E., Pitman, A., Hemmings, F. A., & Leishman, M. R. ( 2009 ). Global patterns in plant height. Journal of Ecology, 97 ( 5 ), 923 – 932. https://doi.org/10.1111/j.1365‐2745.2009.01526.x
dc.identifier.citedreferenceMoquet, L., Vanderplanck, M., Moerman, R., Quinet, M., Roger, N., Michez, D., & Jacquemart, A.‐L. ( 2017 ). Bumblebees depend on ericaceous species to survive in temperate heathlands. Insect Conservation and Diversity, 10 ( 1 ), 78 – 93. https://doi.org/10.1111/icad.12201
dc.identifier.citedreferenceMuller‐Landau, H. C. ( 2010 ). The tolerance‐fecundity trade‐off and the maintenance of diversity in seed size. Proceedings of the National Academy of Sciences of the United States of America, 107 ( 9 ), 4242 – 4247. https://doi.org/10.1073/pnas.0911637107
dc.identifier.citedreferenceMuller‐Landau, H. C., Wright, S. J., Calderón, O., Condit, R., & Hubbell, S. P. ( 2008 ). Interspecific variation in primary seed dispersal in a tropical forest. Journal of Ecology, 96 ( 4 ), 653 – 667. https://doi.org/10.1111/j.1365‐2745.2008.01399.x
dc.identifier.citedreferencePierce, S., Negreiros, D., Cerabolini, B. E. L., Kattge, J., Díaz, S., Kleyer, M., Shipley, B., Wright, S. J., Soudzilovskaia, N. A., Onipchenko, V. G., van Bodegom, P. M., Frenette‐Dussault, C., Weiher, E., Pinho, B. X., Cornelissen, J. H. C., Grime, J. P., Thompson, K., Hunt, R., Wilson, P. J., … Tampucci, D. ( 2017 ). A global method for calculating plant CSR ecological strategies applied across biomes world‐wide. Functional Ecology, 31 ( 2 ), 444 – 457. https://doi.org/10.1111/1365‐2435.12722
dc.identifier.citedreferencePolly, P. D., Lawing, A. M., Fabre, A.‐C., & Goswami, A. ( 2013 ). Phylogenetic principal components analysis and geometric morphometrics. Hystrix, the Italian Journal of Mammalogy, 24 ( 1 ), 33 – 41. https://doi.org/10.4404/hystrix‐24.1‐6383
dc.identifier.citedreferenceR Development Core Team. ( 2011 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
dc.identifier.citedreferenceReich, P. B., & Oleksyn, J. ( 2004 ). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101 ( 30 ), 11001 – 11006. https://doi.org/10.1073/pnas.0403588101
dc.identifier.citedreferenceReich, P. B., Wright, I. J., Cavender‐Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. ( 2003 ). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164 ( S3 ), S143 – S164. https://doi.org/10.1086/374368
dc.working.doi10.7302/131en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.