Show simple item record

Phylogenetic and ecological correlates of pollen morphological diversity in a Neotropical rainforest

dc.contributor.authorMander, Luke
dc.contributor.authorParins‐fukuchi, Caroline
dc.contributor.authorDick, Christopher W.
dc.contributor.authorPunyasena, Surangi W.
dc.contributor.authorJaramillo, Carlos
dc.date.accessioned2021-02-04T21:51:49Z
dc.date.available2022-02-04 16:51:47en
dc.date.available2021-02-04T21:51:49Z
dc.date.issued2021-01
dc.identifier.citationMander, Luke; Parins‐fukuchi, Caroline ; Dick, Christopher W.; Punyasena, Surangi W.; Jaramillo, Carlos (2021). "Phylogenetic and ecological correlates of pollen morphological diversity in a Neotropical rainforest." Biotropica (1): 74-85.
dc.identifier.issn0006-3606
dc.identifier.issn1744-7429
dc.identifier.urihttps://hdl.handle.net/2027.42/166225
dc.description.abstractMorphology varies enormously across clades, and the morphology of a trait may reflect ecological function or the retention of ancestral features. We examine the tension between ecological and phylogenetic correlates of morphological diversity through a case study of pollen grains produced by angiosperms in Barro Colorado Island, Panama (BCI). Using a molecular phylogeny of 730 taxa, we demonstrate a statistically significant association between morphological and genetic distance for these plants. However, the relationship is non- linear, and while close relatives share more morphological features than distant relatives, above a genetic distance of ~ 0.7 increasingly distant relatives are not more divergent in phenotype. The pollen grains of biotically pollinated and abiotically pollinated plants overlap in morphological space, but certain pollen morphotypes and individual morphological traits are unique to these pollination ecologies. Our data show that the pollen grains of biotically pollinated plants are significantly more morphologically diverse than those of abiotically pollinated plants.Abstract in Spanish is available with online material.RESUMENLa morfología varía enormemente entre clados y la morfología de un carácter puede ser reflejo de una función ecológica o de la retención de características ancestrales. Comparamos la influencia ecológica y filogenética en la diversidad morfológica a través de un estudio de caso de granos de polen producidos por angiospermas en Isla de Barro Colorado, Panamá (BCI). Utilizando una filogenia molecular de 730 taxa, demostramos una asociación estadísticamente significativa entre morfología y distancia genética. Sin embargo, la relación es no lineal, y mientras que los parientes cercanos comparten más características morfológicas que los parientes lejanos, por encima de una distancia genética de ~ 0,7 parientes cada vez más distantes no son más divergentes en sus fenotipos. Los granos de polen de plantas con polinización biótica y abiótica se sobreponen en el espacio morfológico, pero algunas morfologías polínicas son exclusivas a cada uno de los dos tipos de polinización. Nuestros datos muestran que los granos de polen de las plantas polinizadas por vectores bióticos son significativamente más diversos morfológicamente que aquellos con polinización abiótica.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdisparity
dc.subject.othermorphospace
dc.subject.othertropical rainforests
dc.subject.otherpollination
dc.subject.otherphylogeny
dc.titlePhylogenetic and ecological correlates of pollen morphological diversity in a Neotropical rainforest
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166225/1/btp12847.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166225/2/btp12847_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166225/3/btp12847-sup-0001-FigS1.pdf
dc.identifier.doi10.1111/btp.12847
dc.identifier.doihttps://dx.doi.org/10.7302/148
dc.identifier.sourceBiotropica
dc.identifier.citedreferenceOliveira, P. E., Gibbs, P. E., & Barbosa, A. A. ( 2004 ). Moth pollination of woody species in the Cerrados of Central Brazil: A case of so much owed to so few? Plant Systematics and Evolution, 245, 41 - 54. https://doi.org/10.1007/s00606- 003- 0120- 0
dc.identifier.citedreferencePunt, W. ( 1986 ). Functional factors influencing pollen form. In S. Blackmore & I. K. Ferguson (Eds.), Pollen and Spores: Form and Function (pp. 97 - 101 ). London, UK: Academic Press.
dc.identifier.citedreferencePunt, W., Hoen, P. P., Blackmore, A., Nilsson, S., & Le Thomas, A. ( 2007 ). Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology, 143, 1 - 81. https://doi.org/10.1016/j.revpalbo.2006.06.008
dc.identifier.citedreferenceRadja, A., Horsley, E. M., Lavrentovich, M. O., & Sweny, A. L. ( 2019 ). Pollen cell wall patterns form from modulated phases. Cell, 176 ( 4 ), 856 - 868.e10. https://doi.org/10.1016/j.cell.2019.01.014
dc.identifier.citedreferenceRenner, S. S., & Feil, J. P. ( 1993 ). Pollinators of tropical dioecious angiosperms. American Journal of Botany, 80, 1100 - 1107. https://doi.org/10.1002/j.1537- 2197.1993.tb15337.x
dc.identifier.citedreferenceRibeiro, J. E. L. S., Hopkins, M. J. G., Vicentini, A., Sothers, C. A., Costa, M. A. S., Brito, J. M., - ¦ Procópio, L. C. ( 1999 ). Flora da Reserva Ducke. Guia de identificação das plantas vasculares de uma floresta de terra firme na Amazônia Central. Manaus: INPA- DFID.
dc.identifier.citedreferenceRicklefs, R. E. ( 2012 ). Species richness and morphological diversity of passerine birds. Proceedings of National Academy of Sciences of the USA, 109, 14482 - 14487. https://doi.org/10.1073/pnas.1212079109
dc.identifier.citedreferenceRoubik, D. W., & Moreno, J. E. ( 1991 ). Pollen and spores of Barro Colorado Island. St. Louis, MI: Missouri Botanical Gardens.
dc.identifier.citedreferenceRoy, K., Balch, D. P., & Hellberg, M. E. ( 2001 ). Spatial patterns of morphological diversity across the Indo- Pacific: Analyses using stromboid gastropods. Proceedings of the Royal Society B, 268, 2503 - 2508.
dc.identifier.citedreferenceRoy, K., & Foote, M. ( 1997 ). Morphological approaches to measuring biodiversity. Trends in Ecology and Evolution, 12, 277 - 281. https://doi.org/10.1016/S0169- 5347(97)81026- 9
dc.identifier.citedreferenceSakai, S., Kato, M., & Nagamasu, H. ( 2000 ). Artocarpus (Moraceae)- gall midge pollination mutualism mediated by a male- flower parasitic fungus. American Journal of Botany, 87, 440 - 445.
dc.identifier.citedreferenceSantos, B. F., Perrard, A., & Brady, S. ( 2019 ). Running in circles in phylomorphospace: Host environment constrains morphological diversification in parasitic wasps. Proceedings of the Royal Society B, 286, 20182352. https://doi.org/10.1098/rspb.2018.2352
dc.identifier.citedreferenceSimmonds, N. W. ( 1945 ). Polygonum L. em. Gaertn. Journal of Ecology, 33, 117 - 120. https://doi.org/10.2307/2256567
dc.identifier.citedreferenceSmith, N., Mori, S. A., Henderson, A., Stevenson, D. M., & Heald, S. V. eds. ( 2004 ) Flowering plants of the Neotropics. Princeton, NJ: Princeton University Press.
dc.identifier.citedreferenceSmith, S. A., & Walker, J. F. ( 2019 ). Py PHLAWD: A python tool for phylogenetic dataset construction. Methods in Ecology and Evolution, 10, 104 - 108.
dc.identifier.citedreferenceSoderstrom, T. R., & Calderón, C. E. ( 1971 ). Insect pollination in tropical rainforest grasses. Biotropica, 3, 1 - 16. https://doi.org/10.2307/2989701
dc.identifier.citedreferenceStacy, E. A., Hamrick, J. L., Nason, J. D., Hubbell, S. P., Foster, R. B., & Condit, R. ( 1996 ). Pollen dispersal in low- density populations of three Neotropical tree species. American Naturalist, 148, 275 - 298. https://doi.org/10.1086/285925
dc.identifier.citedreferenceStamatakis, A. ( 2014 ). RAxML version 8: A tool for phylogenetic analysis and post- analysis of large phylogenies. Bioinformatics, 30, 1312 - 1313. https://doi.org/10.1093/bioinformatics/btu033
dc.identifier.citedreferenceTemeles, E. J., Newman, J. T., Newman, J. H., Cho, S. Y., Mazzotta, R., & Kress, W. J. ( 2016 ). Pollinator competition as a driver of floral divergence: An experimental test. PLoS One, 11, e0146431. https://doi.org/10.1371/journal.pone.0146431
dc.identifier.citedreferencevan der Hammen, T. ( 1954 ). The development of Colombian flora throughout geological periods: I, Maestrichtian to Lower Tertiary. Boletín Geológico (Bogotá), 6, 67 - 128.
dc.identifier.citedreferenceVellend, M., Cornwell, W. K., Magnuson- Ford, K., & Mooers, A. Ã . ( 2011 ). Measuring phylogenetic biodiversity. In A. E. Magurran & B. J. McGill (Eds.), Biological diversity: frontiers in measurement and assessment (pp. 194 - 211 ). Oxford, UK: Oxford University Press, 194- 207.
dc.identifier.citedreferenceVerde Arregoitia, L. D., Fisher, D. O., & Schweizer, M. ( 2017 ). Morphology captures diet and locomotor types in rodents. Royal Society Open Science, 4, 160957. https://doi.org/10.1098/rsos.160957
dc.identifier.citedreferenceVidal- Garcia, M., Byrne, P. G., Roberts, J. D., & Keogh, J. S. ( 2014 ). The role of phylogeny and ecology in shaping morphology in 21 genera and 127 species of Australo- Papuan myobatrachid frogs. Journal of Evolutionary Biology, 27, 181 - 192. https://doi.org/10.1111/jeb.12292
dc.identifier.citedreferenceVincens, A., Lezine, A.- M., Buchet, G., Lewden, D., Le Thomas, A., & Contributors ( 2007 ). African pollen database inventory of tree and shrub pollen types. Review of Palaeobotany and Palynology, 145, 135 - 141. https://doi.org/10.1016/j.revpalbo.2006.09.004
dc.identifier.citedreferencevon Post, L. ( 1916 ). Forest tree pollen in Swedish peat bog deposits. trans. M. B. Davis & K. Fægri. Pollen et Spores, 9, 378- 401. Reprinted in 1991 as pp. In L. A. Real, & J. H. Brown (Eds.), Foundations of ecology (pp. 456 - 482 ). Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceWodehouse, R. P. ( 1935 ). Pollen grains. New York, NY: McGraw- Hill.
dc.identifier.citedreferenceChaloner, W. G. ( 2013 ). Three palynological puzzles. International Journal of Plant Sciences, 174, 602 - 607. https://doi.org/10.1086/668225
dc.identifier.citedreferenceColin, L. J., & Eugene, J. C. ( 1980 ). Pollen energetics and pollination modes. American Journal of Botany, 67, 210 - 215. https://doi.org/10.1002/j.1537- 2197.1980.tb07643.x
dc.identifier.citedreferenceColinvaux, P., De Oliveira, P. A., & Moreno, J. E. ( 1999 ). Amazon pollen manual and atlas. Amsterdam, The Netherlands: Harwood Academic Publishers.
dc.identifier.citedreferenceColinvaux, P. A., De Oliveira, P. E., Moreno, J. E., Miller, M. C., & Bush, M. B. ( 1996 ). A long pollen record from lowland Amazonia: Forest and cooling in glacial times. Science, 274, 85 - 88. https://doi.org/10.1126/science.274.5284.85
dc.identifier.citedreferenceKatifori, E., Alben, S., Cerda, E., Nelson, D. R., & Dumais, J. ( 2010 ). Foldable structures and the natural design of pollen grains. Proceedings of National Academy of Sciences of the USA, 107, 7635 - 7639. https://doi.org/10.1073/pnas.0911223107
dc.identifier.citedreferenceAckerman, J. D. ( 2000 ). Abiotic pollen and pollination: Ecological, functional, and evolutionary perspectives. Plant Systematics and Evolution, 222, 167 - 185. https://doi.org/10.1007/BF00984101
dc.identifier.citedreferenceBawa, K. S. ( 1977 ). The reproductive biology of Cupania guatemalensis Radlk. (Sapindaceae). Evolution, 31, 52 - 63.
dc.identifier.citedreferenceBawa, K. S., Bullock, S. H., Perry, D. R., Coville, R. E., & Grayum, M. H. ( 1985 ). Reproductive biology of tropical lowland rain forest trees. II. Pollination Systems. American Journal of Botany, 72, 346 - 356. https://doi.org/10.1002/j.1537- 2197.1985.tb05358.x
dc.identifier.citedreferenceBeattie, A. J. ( 1971 ). Pollination mechanisms in Viola. New Phytologist, 70, 343 - 360. https://doi.org/10.1111/j.1469- 8137.1971.tb02533.x
dc.identifier.citedreferenceBentley, B. ( 1977 ). The protective function of ants visiting the extrafloral nectaries of Bixa orellana (Bixaceae). Journal of Ecology, 65, 27 - 38. https://doi.org/10.2307/2259060
dc.identifier.citedreferenceBirks, H. H., & Birks, H. J. B. ( 2000 ). Future uses of pollen analysis must include plant macrofossils. Journal of Biogeography, 27, 31 - 35. https://doi.org/10.1046/j.1365- 2699.2000.00375.x
dc.identifier.citedreferenceBittrich, V., Amaral, M. C. E., & Melo, G. A. R. ( 1993 ). Pollination biology of Ternstroemia laevigata and T. dentata (Theaceae). Plant Systematics and Evolution, 185, 1 - 6.
dc.identifier.citedreferenceBrochu, K. K., van Dyke, M. T., Milano, N. J., Petersen, J. D., McArt, S. H., Nault, B. A., - ¦ Danforth, B. N. ( 2020 ). Pollen defenses negatively impact foraging and fitness in a generalist bee ( Bombus impatiens: Apidae). Scientific Reports, 10, 3112. https://doi.org/10.1038/s41598- 020- 58274- 2
dc.identifier.citedreferenceBullock, S. H. ( 1994 ). Wind pollination of neotropical dioecious trees. Biotropica, 26, 172 - 179. https://doi.org/10.2307/2388806
dc.identifier.citedreferenceBurn, M. J., & Mayle, F. E. ( 2008 ). Palynological differentiation between genera of the Moraceae family and implications for Amazonian palaeoecology. Review of Palaeobotany and Palynology, 149, 187 - 201. https://doi.org/10.1016/j.revpalbo.2007.12.003
dc.identifier.citedreferenceBush, M. B. ( 1995 ). Neotropical plant reproductive strategies and fossil pollen representation. American Naturalist, 145, 594 - 609. https://doi.org/10.1086/285757
dc.identifier.citedreferenceBush, M. B., & Colinvaux, P. A. ( 1990 ). A pollen record of a complete glacial cycle from lowland Panama. Journal of Vegetation Science, 1, 105 - 118. https://doi.org/10.2307/3236060
dc.identifier.citedreferenceBush, M. B., & Rivera, R. ( 1998 ). Pollen dispersal and representation in a neotropical rainforest. Global Ecology and Biogeography Letters, 7, 379 - 392.
dc.identifier.citedreferenceBush, M. B., & Rivera, R. ( 2001 ). Reproductive ecology and pollen representation among neotropical trees. Global Ecology and Biogeography, 10, 359 - 367. https://doi.org/10.1046/j.1466- 822X.2001.00247.x
dc.identifier.citedreferenceBush, M. B., & Weng, C. ( 2007 ). Introducing a new (freeware) tool for palynology. Journal of Biogeography, 34, 377 - 380. https://doi.org/10.1111/j.1365- 2699.2006.01645.x
dc.identifier.citedreferenceCain, S. A. ( 1940 ). The identification of species in fossil pollen of Pinus by size- frequency determinations. American Journal of Botany, 27, 301 - 308. https://doi.org/10.1002/j.1537- 2197.1940.tb14686.x
dc.identifier.citedreferenceChaloner, W. G. ( 1976 ). The evolution of adaptive features in fossil exines. In I. K. Ferguson & J. Muller (Eds.), The Evolutionary significance of the exine (pp. 1 - 14 ). London, UK: Academic Press.
dc.identifier.citedreferenceChaloner, W. G. ( 1986 ). Electrostatic forces in insect pollination and their significance in exine ornament. In S. Blackmore & I. K. Ferguson (Eds.), Pollen and Spores: Form and Function (pp. 103 - 108 ). London, UK: Academic Press.
dc.identifier.citedreferenceCollevatti, R. G., Schoereder, J. H., & Campos, L. A. O. ( 2000 ). Foraging behavior of bee pollinators on the tropical weed Triumfetta semitriloba: Flight distance and directionality. Revista Brasileira De Biologia, 60, 29 - 37. https://doi.org/10.1590/S0034- 71082000000100005
dc.identifier.citedreferenceCrane, P. R. ( 1986 ). Form and function in wind dispersed pollen. In S. Blackmore & I. K. Ferguson (Eds.), Pollen and spores: Form and function (pp. 179 - 202 ). London, UK: Academic Press.
dc.identifier.citedreferenceCroat, T. B. ( 1978 ). Flora of barro colorado Island. Stanford, CA: Stanford University Press.
dc.identifier.citedreferenceDatta, A. N., Maiti, S. N., & Basak, S. L. ( 1982 ). Outcrossing and isolation requirement in jute ( Corchorus olitorius L.). Euphytica, 31, 97 - 101. https://doi.org/10.1007/BF00028311
dc.identifier.citedreferenceDct, R. ( 2013 ). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferencede Miranda, S. A., & Reinhard, K. J. ( 2006 ). Critical analysis of coprolite evidence of medicinal plant use, Piauí, Brazil. Palaeogeography Palaeoclimatology Palaeoecology, 237, 110 - 118.
dc.identifier.citedreferenceErwin, D. H. ( 2007 ). Disparity: Morphological pattern and developmental context. Palaeontology, 50, 57 - 73. https://doi.org/10.1111/j.1475- 4983.2006.00614.x
dc.identifier.citedreferenceEstes, J. R., & Thorp, R. W. ( 1974 ). Pollination in Ludwigia peploides ssp. glabrescens (Onagraceae). Bulletin of the Torrey Botanical Club, 101, 272 - 276. https://doi.org/10.2307/2484872
dc.identifier.citedreferenceFerguson, I. K., & Skvarla, J. J. ( 1982 ). Pollen morphology in relation to pollinators in Papilionoideae (Leguminosae). Botanical Journal of the Linnean Society, 84, 183 - 193. https://doi.org/10.1111/j.1095- 8339.1982.tb00533.x
dc.identifier.citedreferenceFoote, M. ( 1994 ). Morphological disparity in Ordovcian- Devonian crinoids and the early saturation of morphological space. Paleobiology, 20, 320 - 344.
dc.identifier.citedreferenceForest, F., Grenyer, R., Rouget, M., Davies, T. J., Cowling, R. M., Faith, D. P., - ¦ Savolainen, V. ( 2007 ). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757 - 760. https://doi.org/10.1038/nature05587
dc.identifier.citedreferenceGermeraad, J. H., Hopping, C. A., & Muller, J. ( 1968 ). Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology, 6, 189 - 348. https://doi.org/10.1016/0034- 6667(68)90051- 1
dc.identifier.citedreferenceGhazoul, J. ( 2006 ). Floral diversity and the facilitation of pollination. Journal of Ecology, 94, 295 - 304. https://doi.org/10.1111/j.1365- 2745.2006.01098.x
dc.identifier.citedreferenceGosling, W. D., Miller, C. S., & Livingstone, D. A. ( 2013 ). Atlas of the tropical West African pollen flora. Review of Palaeobotany and Palynology, 199, 1 - 135. https://doi.org/10.1016/j.revpalbo.2013.01.003
dc.identifier.citedreferenceGould, S. J. ( 1989 ). Wonderful life. New York, NY: Norton.
dc.identifier.citedreferenceHamming, R. W. ( 1950 ). Error detecting and error correcting codes. The Bell Systems Technical Journal, 29, 147 - 160. https://doi.org/10.1002/j.1538- 7305.1950.tb00463.x
dc.identifier.citedreferenceHaselhorst, D. S., Moreno, J. E., & Punyasena, S. W. ( 2013 ). Variability within the 10- Year Pollen Rain of a seasonal neotropical forest and its implications for paleoenvironmental and phenological research. PLoS One, 8, e53485. https://doi.org/10.1371/journal.pone.0053485
dc.identifier.citedreferenceHemsley, A. R., Collinson, M. E., Kovach, W. L., Vincent, B., & Williams, T. ( 1994 ). The role of self- assembly in biological systems: Evidence from iridescent colloidal sporopollenin in Selaginella megaspore walls. Philosophical Transactions of the Royal Society B, 345, 163 - 173.
dc.identifier.citedreferenceHeslop- Harrison, J. ( 1976 ). The adaptive significance of the exine. In I. K. Ferguson & J. Muller (Eds.), The evolutionary significance of the exine (pp. 27 - 37 ). London, UK: Academic Press.
dc.identifier.citedreferenceHooghiemstra, H. ( 1984 ). Vegetational and climatic history of the high plain of Bogota, Colombia: A continuous record of the last 3.5 million years. Dissertactiones Botanicae, 79. J. Cramer, Vaduz, 368 pp.
dc.identifier.citedreferenceHuang, S.- Q. ( 2003 ). Flower dimorphism and the maintenance of andromonoecy in Sagittaria guyanensis ssp. lappula (Alismataceae). New Phytologist, 157, 357 - 364. https://doi.org/10.1046/j.1469- 8137.2003.00676.x
dc.identifier.citedreferenceIsaac, N. J., Turvey, S. T., Collen, B., Waterman, C., & Baillie, J. E. ( 2007 ). Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS One, 2, e296. https://doi.org/10.1371/journal.pone.0000296
dc.identifier.citedreferenceJaramillo, C., & Rueda, M. J. ( 2020 ). A Morphological electronic database of cretaceous- tertiary and extant pollen and spores from Northern South America. Panama City: Smithsonian Tropical Research Institute.
dc.identifier.citedreferenceJaramillo, C., Rueda, M. J., & Mora, G. ( 2006 ). Cenozoic plant diversity in the Neotropics. Science, 31, 1893 - 1896. https://doi.org/10.1126/science.1121380
dc.identifier.citedreferenceJardiné, S., & Magloire, L. ( 1963 ). Palynologie et stratigraphie du Crétacé des bassins du Sénégal et de Côte d’Ivorie. 1er Colloquim Africain Micropalaeontologie, Dakar (1963), M.B.R. Collins Institute of Micropalaeontology, 32, 187 - 245.
dc.identifier.citedreferenceKatoh, K., & Standley, D. M. ( 2013 ). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772 - 780. https://doi.org/10.1093/molbev/mst010
dc.identifier.citedreferenceKelly, S., Grenyer, R., & Scotland, R. W. ( 2014 ). Phylogenetic trees do not reliably predict feature diversity. Diversity and Distributions, 20, 600 - 612. https://doi.org/10.1111/ddi.12188
dc.identifier.citedreferenceKembel, S. W., & Hubbell, S. P. ( 2006 ). The phylogenetic structure of a Neotropical forest tree community. Ecology, 87, S86 - S99. https://doi.org/10.1890/0012- 9658(2006)87[86:TPSOAN]2.0.CO;2
dc.identifier.citedreferenceKohler, E., & Lange, E. ( 1979 ). A contribution to distinguishing cereal from wild grass pollen grains by LM and SEM. Grana, 18, 133 - 140. https://doi.org/10.1080/00173137909424973
dc.identifier.citedreferenceKonzmann, S., Koethe, S., & Lunau, K. ( 2019 ). Pollen grain morphology is not exclusively responsible for pollen collectability in bumble bees. Scientific Reports, 9, 4705. https://doi.org/10.1038/s41598- 019- 41262- 6
dc.identifier.citedreferenceKress, W. J., Erickson, D. L., Jones, F. A., Swenson, N. G., Perez, R., Sanjur, O., & Bermingham, E. ( 2009 ). Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of National Academy of Sciences of the USA, 106, 18621 - 18626.
dc.identifier.citedreferenceKriebel, R., Khabbazian, M., & Sytsma, K. J. ( 2017 ). A continuous morphological approach to study the evolution of pollen in a phylogenetic context: An example with the order Myrtales. PLoS One, 12, e0187228. https://doi.org/10.1371/journal.pone.0187228
dc.identifier.citedreferenceLe Corff, J., Agren, J., & Schemske, D. W. ( 1998 ). Floral display, pollinator discrimination, and female reproductive success in two monoecious Begonia species. Ecology, 79, 1610 - 1619.
dc.identifier.citedreferenceLetten, A. D., & Cornwell, W. K. ( 2015 ). Trees, branches and (square) roots: Why evolutionary relatedness is not linearly related to functional distance. Methods in Ecology and Evolution, 6, 439 - 444. https://doi.org/10.1111/2041- 210X.12237
dc.identifier.citedreferenceLinder, H. P., & Ferguson, I. K. ( 1985 ). Notes on the pollen morphology and phylogeny restionales and poales. Grana, 24, 65 - 76. https://doi.org/10.1080/00173138509429917
dc.identifier.citedreferenceLivingstone, D. A. ( 1962 ). Age of deglaciation in the Ruwenzori Range, Uganda. Nature, 194, 859 - 860. https://doi.org/10.1038/194859b0
dc.identifier.citedreferenceLosos, J. B. ( 2008 ). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995 - 1007. https://doi.org/10.1111/j.1461- 0248.2008.01229.x
dc.identifier.citedreferenceLosos, J. B., & Miles, D. B. ( 1994 ). Adaptation, constraint, and the comparative method: Phylogenetic issues and methods. In P. C. Wainwright & S. M. Reilly (Eds.), Ecological morphology: Integrative organismal biology (pp. 60 - 98 ). Chicago, IL: University of Chicago Press.
dc.identifier.citedreferenceLupia, R. ( 1999 ). Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology, 25, 1 - 28.
dc.identifier.citedreferenceMander, L. ( 2016 ). A combinatorial approach to angiosperm pollen morphology. Proceedings of the Royal Society B, 283, 20162033. https://doi.org/10.1098/rspb.2016.2033
dc.identifier.citedreferenceMander, L. ( 2018 ). The latitudinal distribution of morphological diversity among Holocene angiosperm pollen grains from eastern North America and the Neotropics. Integrative and Comparative Biology, 58, 1170 - 1178. https://doi.org/10.1093/icb/icy097
dc.identifier.citedreferenceMander, L., Li, M., Mio, W., Fowlkes, C. C., & Punyasena, S. W. ( 2013 ). Classification of grass pollen through the quantitative analysis of surface ornamentation and texture. Proceedings of the Royal Society B, 280, 20131905. https://doi.org/10.1098/rspb.2013.1905
dc.identifier.citedreferenceMander, L., Parins- Fukuchi, C., Dick, C. W., Punyasena, S. W., & Jaramillo, C. ( 2020 ). Data from: Phylogenetic and Ecological Correlates of Pollen Morphological Diversity in a Neotropical Rainforest. Dryad Digital Repository. https://doi.org/10.5061/dryad.59zw3r25b
dc.identifier.citedreferenceMander, L., & Punyasena, S. W. ( 2014 ). On the taxonomic resolution of pollen and spore records of Earth’s vegetation. International Journal of Plant Sciences, 175, 931 - 945. https://doi.org/10.1086/677680
dc.identifier.citedreferenceMander, L., & Punyasena, S. W. ( 2015 ). Grass pollen surface ornamentation: A review of morphotypes and taxonomic utility. Journal of Micropalaeontology, 35, 121 - 124. https://doi.org/10.1144/jmpaleo2015- 025
dc.identifier.citedreferenceMartins, F. Q., & Batalha, M. A. ( 2006 ). Pollination systems and floral traits in cerrado woody species of the upper Taquari region (central Brazil). Brazilian Journal of Biology, 66, 543 - 552. https://doi.org/10.1590/S1519- 69842006000300021
dc.identifier.citedreferenceMiles, D. B., & Ricklefs, R. E. ( 1984 ). The correlation between ecology and morphology in deciduous forest passerine birds. Ecology, 65, 1629 - 1640. https://doi.org/10.2307/1939141
dc.identifier.citedreferenceMolano- Flores, B. ( 2001 ). Reproductive biology of Eryngium yuccifolium (Apiaceae), a prairie species. Journal of the Torrey Botanical Society, 128, 1 - 6. https://doi.org/10.2307/3088654
dc.identifier.citedreferenceMorley, R. J. ( 2000 ). Origin and evolution of tropical rain forests. Chichester, UK: Wiley.
dc.identifier.citedreferenceMouquet, N., Devictor, V., Meynard, C. N., Munoz, F., Bersier, L.- F., Chave, J., - ¦ Thuiller, W. ( 2012 ). Ecophylogenetics: Advances and perspectives. Biological Reviews of the Cambridge Philosophical Society, 87, 769 - 785. https://doi.org/10.1111/j.1469- 185X.2012.00224.x
dc.identifier.citedreferenceMuller, J. ( 1979 ). Form and function in angiosperm pollen. Annals of the Missouri Botanical Garden, 66, 593 - 632.
dc.identifier.citedreferenceMuller, J., de Di Giacomo, E., & Van Erve, A. W. ( 1987 ). A palynological zonation for the Cretaceous, Tertiary, and Quaternary of northern South America. AASP Contribution Series, 19, 7 - 76.
dc.identifier.citedreferenceNicholls, E., & Hempel de Ibarra, N. ( 2017 ). Assessment of pollen rewards by foraging bees. Functional Ecology, 31, 76 - 87. https://doi.org/10.1111/1365- 2435.12778
dc.identifier.citedreferencePage, J. S. ( 1978 ). A scanning electron microscope survey of grass pollen. Kew Bulletin, 32, 313 - 319. https://doi.org/10.2307/4117102
dc.identifier.citedreferencePilatowski, R. E. ( 1982 ). A taxonomic study of the Hydrangea arborescens complex. Castanea, 47, 84 - 98.
dc.working.doi10.7302/148en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.