Show simple item record

Explicit Gain Equations for Hybrid Graphene‐Quantum‐Dot Photodetectors

dc.contributor.authorChen, Kaixiang
dc.contributor.authorZhang, Chufan
dc.contributor.authorZang, Xiaoxian
dc.contributor.authorMa, Fuyuan
dc.contributor.authorChen, Yuanzhen
dc.contributor.authorDan, Yaping
dc.date.accessioned2021-02-04T21:52:12Z
dc.date.available2022-02-04 16:52:09en
dc.date.available2021-02-04T21:52:12Z
dc.date.issued2021-01
dc.identifier.citationChen, Kaixiang; Zhang, Chufan; Zang, Xiaoxian; Ma, Fuyuan; Chen, Yuanzhen; Dan, Yaping (2021). "Explicit Gain Equations for Hybrid Graphene‐Quantum‐Dot Photodetectors." Small 17(2): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/166231
dc.description.abstractGraphene is an attractive material for broadband photodetection but suffers from weak light absorption. Coating graphene with quantum dots can significantly enhance light absorption and create extraordinarily high photogain. This high gain is often explained by the classical gain theory which is unfortunately an implicit function and may even be questionable. In this work, explicit gain equations for hybrid graphene‐quantum‐dot photodetectors are derived. Because of the work function mismatch, lead sulfide quantum dots coated on graphene will form a surface depletion region near the interface of quantum dots and graphene. Light illumination narrows down the surface depletion region, creating a photovoltage that gates the graphene. As a result, high photogain in graphene is observed. The explicit gain equations are derived from the theoretical gate transfer characteristics of graphene and the correlation of the photovoltage with the light illumination intensity. The derived explicit gain equations fit well with the experimental data, from which physical parameters are extracted.The classical photoconductive gain theory is not only questionable, but also an implicit function of illumination light intensity and device parameters. In this work, explicit photoconductive gain equations are derived for graphene devices coated with lead sulfide quantum dots. The gain equations fit well with the experimental data and therefore allow for designing and predicting photoresponses of the graphene‐quantum‐dot photodetectors.
dc.publisherWiley Periodicals, Inc.
dc.publisherMcGraw‐Hill
dc.subject.otherquantum dots
dc.subject.othergraphene
dc.subject.otherphotodetectors
dc.subject.otherphotogain
dc.subject.otherphoto‐Hall effect
dc.titleExplicit Gain Equations for Hybrid Graphene‐Quantum‐Dot Photodetectors
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166231/1/smll202006307_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166231/2/smll202006307.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166231/3/smll202006307-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/smll.202006307
dc.identifier.doihttps://dx.doi.org/10.7302/154
dc.identifier.sourceSmall
dc.identifier.citedreferencea) C.‐H. Liu, Y.‐C. Chang, T. B. Norris, Z. Zhong, Nat. Nanotechnol. 2014, 9, 273; b) S. Yuan, R. Yu, C. Ma, B. Deng, Q. Guo, X. Chen, C. Li, C. Chen, K. Watanabe, T. Taniguchi, F. J. García de Abajo, F. Xia, ACS Photonics 2020, 7, 1206; c) B. Y. Zhang, T. Liu, B. Meng, X. Li, G. Liang, X. Hu, Q. J. Wang, Nat. Commun. 2013, 4, 1811; d) X. Yu, Z. Dong, Y. Liu, T. Liu, J. Tao, Y. Zeng, J. K. W. Yang, Q. J. Wang, Nanoscale 2016, 8, 327.
dc.identifier.citedreferencea) L. Zheng, W. Zhou, Z. Ning, G. Wang, X. Cheng, W. Hu, W. Zhou, Z. Liu, S. Yang, K. Xu, M. Luo, Y. Yu, Adv. Opt. Mater. 2018, 6, 1800985; b) G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, F. H. L. Koppens, Nat. Nanotechnol. 2012, 7, 363; c) L. Turyanska, O. Makarovsky, S. A. Svatek, P. H. Beton, C. J. Mellor, A. Patanè, L. Eaves, N. R. Thomas, M. W. Fay, A. J. Marsden, N. R. Wilson, Adv. Electron. Mater. 2015, 1, 1500062.
dc.identifier.citedreferenceJ. He, K. Chen, C. Huang, X. Wang, Y. He, Y. Dan, ACS Nano 2020, 14, 3405.
dc.identifier.citedreferenceK. Chen, X. Zhao, A. Mesli, Y. He, Y. Dan, ACS Nano 2018, 12, 3436.
dc.identifier.citedreferenceR. L. Petritz, Phys. Rev. 1956, 104, 1508.
dc.identifier.citedreferenceY. Dan, X. Zhao, K. Chen, A. Mesli, ACS Photonics 2018, 5, 4111.
dc.identifier.citedreferenceD. A. Neamen, Semiconductor Physics and Devices: Basic Principles, McGraw‐Hill, New York, NY 2012.
dc.identifier.citedreferencea) G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E. H. Sargent, Nature 2006, 442, 180; b) G. Konstantatos, E. H. Sargent, Infrared Phys. Technol. 2011, 54, 278; c) G. Konstantatos, E. H. Sargent, Nat. Nanotechnol. 2010, 5, 391.
dc.identifier.citedreferencea) A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183; b) K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H. L. Stormer, Solid State Commun. 2008, 146, 351; c) S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Phys. Rev. Lett. 2008, 100, 016602; d) J.‐H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206; e) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
dc.identifier.citedreferencea) R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308; b) F. Xia, T. Mueller, R. Golizadeh‐Mojarad, M. Freitag, Y.‐M. Lin, J. Tsang, V. Perebeinos, P. Avouris, Nano Lett. 2009, 9, 1039; c) F. Xia, T. Mueller, Y.‐M. Lin, A. Valdes‐Garcia, P. Avouris, Nat. Nanotechnol. 2009, 4, 839; d) X. Gan, R.‐J. Shiue, Y. Gao, I. Meric, T. F. Heinz, K. Shepard, J. Hone, S. Assefa, D. Englund, Nat. Photonics 2013, 7, 883.
dc.identifier.citedreferenceJ. He, P. Gao, Z. Ling, L. Ding, Z. Yang, J. Ye, Y. Cui, ACS Nano 2016, 10, 11525.
dc.identifier.citedreferencea) G. Zebrev, E. Melnik, A. Tselykovskiy, arXiv preprint arXiv:1405.5766 2014; b) N. Ma, D. Jena, 2D Mater. 2015, 2, 015003.
dc.identifier.citedreferenceT. Fang, A. Konar, H. Xing, D. Jena, Appl. Phys. Lett. 2007, 91, 092109.
dc.identifier.citedreferenceM. J. Grotevent, C. U. Hail, S. Yakunin, D. N. Dirin, K. Thodkar, G. B. Barin, P. Guyot‐Sionnest, M. Calame, D. Poulikakos, M. V. Kovalenko, I. Shorubalko, Adv. Opt. Mater. 2019, 7, 1900019.
dc.identifier.citedreferenceY. Dan, K. Seo, K. Takei, J. H. Meza, A. Javey, K. B. Crozier, Nano Lett. 2011, 11, 2527.
dc.working.doi10.7302/154en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.