Show simple item record

Penetration effect of connected and automated vehicles on cooperative on‐ramp merging

dc.contributor.authorDing, Jishiyu
dc.contributor.authorPeng, Huei
dc.contributor.authorZhang, Yi
dc.contributor.authorLi, Li
dc.date.accessioned2021-02-04T21:53:50Z
dc.date.available2021-02-04T21:53:50Z
dc.date.issued2020-01
dc.identifier.citationDing, Jishiyu; Peng, Huei; Zhang, Yi; Li, Li (2020). "Penetration effect of connected and automated vehicles on cooperative on‐ramp merging." IET Intelligent Transport Systems 14(1): 56-64.
dc.identifier.issn1751-956X
dc.identifier.issn1751-9578
dc.identifier.urihttps://hdl.handle.net/2027.42/166263
dc.publisherWiley Periodicals, Inc.
dc.publisherThe Institution of Engineering and Technology
dc.subject.othercentralised cooperative merging framework
dc.subject.other(C3360B) Road‐traffic system control
dc.subject.othercooperative on‐ramp merging
dc.subject.otherscheduling
dc.subject.otherroad traffic
dc.subject.otherroad vehicles
dc.subject.otherroad traffic control
dc.subject.otherhuman‐driven vehicles
dc.subject.otherhierarchical cooperative merging framework
dc.subject.otherCAV penetration
dc.subject.otherconnected and automated vehicles
dc.titlePenetration effect of connected and automated vehicles on cooperative on‐ramp merging
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelComputer Science
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166263/1/itr2bf00795.pdf
dc.identifier.doi10.1049/iet-its.2019.0488
dc.identifier.doihttps://dx.doi.org/10.7302/186
dc.identifier.sourceIET Intelligent Transport Systems
dc.identifier.citedreferenceBai Y. Zhang Y. Li X. et al.: ‘ Cooperative weaving for connected and automated vehicles to reduce traffic oscillation ’, Transportmetrica A: Transp. Sci., 2019, 1225, pp. 1 – 19
dc.identifier.citedreferenceAgarwal S. Kachroo P. Contreras S. et al.: ‘ Feedback‐coordinated ramp control of consecutive on‐ramps using distributed modeling and Godunov‐based satisfiable allocation ’, IEEE Trans. Intell. Transp. Syst., 2015, 16, ( 5 ), pp. 2384 – 2392
dc.identifier.citedreferencePapamichail I. Papageorgiou M.: ‘ Traffic‐responsive linked ramp‐metering control ’, IEEE Trans. Intell. Transp. Syst., 2008, 9, ( 1 ), pp. 111 – 121
dc.identifier.citedreferenceLi L. Wen D. Yao D.: ‘ A survey of traffic control with vehicular communications ’, IEEE Trans. Intell. Transp. Syst., 2014, 15, ( 1 ), pp. 425 – 432
dc.identifier.citedreferenceLi L. Wang F.‐Y.: ‘ Cooperative driving at blind crossings using intervehicle communication ’, IEEE Trans. Veh. Technol., 2006, 55, ( 6 ), pp. 1712 – 1724
dc.identifier.citedreferenceDing J. Li L. Zhang Y. et al.: ‘ A rule‐based cooperative vehicle merging strategy for connected and automated vehicles ’, IEEE Trans. Intell. Transp. Syst., 2019, pp. 1 – 11, DOI: 10.1109/TITS.2019.2928969
dc.identifier.citedreferenceJames R.M. Melson C. Hu J. et al.: ‘ Characterizing the impact of production adaptive cruise control on traffic flow: an investigation ’, Transportmetrica B: Transp. Dyn., 2019, 7, ( 1 ), pp. 992 – 1012
dc.identifier.citedreferenceRios‐Torres J. Malikopoulos A.A.: ‘ Automated and cooperative vehicle merging at highway on‐ramps ’, IEEE Trans. Intell. Transp. Syst., 2017, 18, ( 4 ), pp. 780 – 789
dc.identifier.citedreferenceMeng Y. Li L. Wang F.‐Y. et al.: ‘ Analysis of cooperative driving strategies for nonsignalized intersections ’, IEEE Trans. Veh. Technol., 2018, 67, ( 4 ), pp. 2900 – 2911
dc.identifier.citedreferenceXu H. Feng S. Zhang Y. et al.: ‘ A grouping based cooperative driving strategy for CAVs merging problems ’, IEEE Trans. Veh. Technol., 2019, 68, pp. 6125 – 6136
dc.identifier.citedreferenceRios‐Torres J. Malikopoulos A.A.: ‘ A survey on the coordination of connected and automated vehicles at intersections and merging at highway on‐ramps ’, IEEE Trans. Intell. Transp. Syst., 2017, 18, ( 5 ), pp. 1066 – 1077
dc.identifier.citedreferenceZhang Y. Cassandras C.G.: ‘ The penetration effect of connected automated vehicles in urban traffic: an energy impact study ’, arXiv preprint arXiv:1803.05577, 2018, pp. 1 – 8
dc.identifier.citedreferenceZhao L. Malikopoulos A. Rios‐Torres J.: ‘ Optimal control of connected and automated vehicles at roundabouts: an investigation in a mixed‐traffic environment ’, IFAC‐PapersOnLine, 2018, 51, ( 9 ), pp. 73 – 78
dc.identifier.citedreferenceZou Y. Qu X.: ‘ On the impact of connected automated vehicles in freeway work zones: a cooperative cellular automata model based approach ’, J. Intell. Connect. Veh., 2018, 1, ( 1 ), pp. 1 – 14
dc.identifier.citedreferenceZhou M. Qu X. Jin S.: ‘ On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model‐based approach ’, IEEE Trans. Intell. Transp. Syst., 2016, 18, ( 6 ), pp. 1422 – 1428
dc.identifier.citedreferencePark H. Bhamidipati C.S. Smith B.L.: ‘ Development and evaluation of enhanced intellidrive‐enabled lane changing advisory algorithm to address freeway merge conflict ’, Transp. Res. Rec., 2011, 2243, ( 1 ), pp. 146 – 157
dc.identifier.citedreferenceHan Y. Ahn S.: ‘ Variable speed release (VSR): speed control to increase bottleneck capacity ’, IEEE Trans. Intell. Transp. Syst., 2019, pp. 1 – 10, DOI: 10.1109/TITS.2019.2891314
dc.identifier.citedreferenceDavis L.C.: ‘ Effect of adaptive cruise control systems on mixed traffic flow near an on‐ramp ’, Physica A, Stat. Mech. App., 2007, 379, ( 1 ), pp. 274 – 290
dc.identifier.citedreferenceRios‐Torres J. Malikopoulos A.A.: ‘ Energy impact of different penetrations of connected and automated vehicles: a preliminary assessment ’. Proc. of the 9th ACM SIGSPATIAL Int. Workshop on Computational Transportation Science, Burlingame, CA, USA, 31 October–3 November 2016, pp. 1 – 6
dc.identifier.citedreferenceRios‐Torres J. Malikopoulos A.A.: ‘ Impact of partial penetrations of connected and automated vehicles on fuel consumption and traffic flow ’, IEEE Trans. Intell. Veh., 2018, 3, ( 4 ), pp. 453 – 462
dc.identifier.citedreferenceKotsialos A. Papageorgiou M.: ‘ Nonlinear optimal control applied to coordinated ramp metering ’, IEEE Trans. Control Syst. Technol., 2004, 12, ( 6 ), pp. 920 – 933
dc.identifier.citedreferenceXie Y. Zhang H. Gartner N.H. et al.: ‘ Collaborative merging strategy for freeway ramp operations in a connected and autonomous vehicles environment ’, J. Intell. Transp. Syst., 2017, 21, ( 2 ), pp. 136 – 147
dc.identifier.citedreferenceLetter C. Elefteriadou L.: ‘ Efficient control of fully automated connected vehicles at freeway merge segments ’, Transp. Res. C, Emerg. Technol., 2017, 80, pp. 190 – 205
dc.identifier.citedreferenceVinitsky E. Kreidieh A. Flem L.L. et al.: ‘ Benchmarks for reinforcement learning in mixed‐autonomy traffic ’. Conf. on Robot Learning, Zürich, Switzerland, June 2018, pp. 399 – 409
dc.identifier.citedreferenceKreidieh A.R. Wu C. Bayen A.M.: ‘ Dissipating stop‐and‐go waves in closed and open networks via deep reinforcement learning ’. IEEE 2018 21st Int. Conf. on Intelligent Transportation Systems (ITSC), Maui, HI, USA, November 2018, pp. 1475 – 1480
dc.identifier.citedreferenceGipps P.G.: ‘ A behavioural car‐following model for computer simulation ’, Transp. Res. B, Methodol., 1981, 15, ( 2 ), pp. 105 – 111
dc.identifier.citedreferenceMd Abdus S.K. Masakazu M. Junichi M. et al.: ‘ Ecological vehicle control on roads with up–down slopes ’, IEEE Trans. Intell. Transp. Syst., 2011, 12, ( 3 ), pp. 783 – 794
dc.identifier.citedreferenceAhn K. Rakha H. Trani A. et al.: ‘ Estimating vehicle fuel consumption and emissions based on instantaneous speed and acceleration levels ’, J. Transp. Eng., 2002, 128, ( 2 ), pp. 182 – 190
dc.identifier.citedreferenceChen Y. Li Y.: ‘ Computational intelligence assisted design: in industrial revolution 4.0 ’ ( CRC Press, Boca Raton, FL, USA, 2018 )
dc.identifier.citedreferenceXu H. Zhang Y. Li L. et al.: ‘ Cooperative driving at unsignalized intersections using tree search ’, IEEE Trans. Intell. Transp. Syst., 2019, pp. 1 – 9, accepted
dc.identifier.citedreferenceMizuta A. Roberts K. Jacobsen L. et al.: ‘Ramp metering: a proven, cost‐effective operational strategy – a primer’. Technical report, 2014
dc.working.doi10.7302/186en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.