Show simple item record

Kinetic‐Scale Turbulence in the Venusian Magnetosheath

dc.contributor.authorBowen, T. A.
dc.contributor.authorBale, S. D.
dc.contributor.authorBandyopadhyay, R.
dc.contributor.authorBonnell, J. W.
dc.contributor.authorCase, A.
dc.contributor.authorChasapis, A.
dc.contributor.authorChen, C. H. K.
dc.contributor.authorCurry, S.
dc.contributor.authorDudok de Wit, T.
dc.contributor.authorGoetz, K.
dc.contributor.authorGoodrich, K.
dc.contributor.authorGruesbeck, J.
dc.contributor.authorHalekas, J.
dc.contributor.authorHarvey, P. R.
dc.contributor.authorHowes, G. G.
dc.contributor.authorKasper, J. C.
dc.contributor.authorKorreck, K.
dc.contributor.authorLarson, D.
dc.contributor.authorLivi, R.
dc.contributor.authorMacDowall, R. J.
dc.contributor.authorMalaspina, D. M.
dc.contributor.authorMallet, A.
dc.contributor.authorMcManus, M. D.
dc.contributor.authorPage, B.
dc.contributor.authorPulupa, M.
dc.contributor.authorRaouafi, N.
dc.contributor.authorStevens, M. L.
dc.contributor.authorWhittlesey, P.
dc.date.accessioned2021-02-04T21:54:00Z
dc.date.available2022-02-04 16:53:58en
dc.date.available2021-02-04T21:54:00Z
dc.date.issued2021-01-28
dc.identifier.citationBowen, T. A.; Bale, S. D.; Bandyopadhyay, R.; Bonnell, J. W.; Case, A.; Chasapis, A.; Chen, C. H. K.; Curry, S.; Dudok de Wit, T.; Goetz, K.; Goodrich, K.; Gruesbeck, J.; Halekas, J.; Harvey, P. R.; Howes, G. G.; Kasper, J. C.; Korreck, K.; Larson, D.; Livi, R.; MacDowall, R. J.; Malaspina, D. M.; Mallet, A.; McManus, M. D.; Page, B.; Pulupa, M.; Raouafi, N.; Stevens, M. L.; Whittlesey, P. (2021). "Kinetic‐Scale Turbulence in the Venusian Magnetosheath." Geophysical Research Letters 48(2): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/166266
dc.description.abstractWhile not specifically designed as a planetary mission, NASA’s Parker Solar Probe (PSP) mission uses a series of Venus gravity assists (VGAs) in order to reduce its perihelion distance. These orbital maneuvers provide the opportunity for direct measurements of the Venus plasma environment at high cadence. We present first observations of kinetic scale turbulence in the Venus magnetosheath from the first two VGAs. In VGA1, PSP observed a quasi‐parallel shock, β ∼ 1 magnetosheath plasma, and a kinetic range scaling of k−2.9. VGA2 was characterized by a quasi‐perpendicular shock with β ∼ 10, and a steep k−3.4 spectral scaling. Temperature anisotropy measurements from VGA2 suggest an active mirror mode instability. Significant coherent waves are present in both encounters at sub‐ion and electron scales. Using conditioning techniques to exclude these electromagnetic wave events suggests the presence of developed sub‐ion kinetic turbulence in both magnetosheath encounters.Key PointsObservations from Parker Solar Probe reveal kinetic scale turbulence in the Venus magnetosheathDifferences in kinetic range spectral indices between flyby‐encounters are possibly due to shock geometry and kinetic plasma instabilities
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge University Press
dc.subject.otherplasma
dc.subject.otherInstability
dc.subject.otherkinetic
dc.subject.otherPSP
dc.subject.otherturbulence
dc.subject.otherVenus
dc.titleKinetic‐Scale Turbulence in the Venusian Magnetosheath
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166266/1/grl61662.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166266/2/grl61662_am.pdf
dc.identifier.doi10.1029/2020GL090783
dc.identifier.doihttps://dx.doi.org/10.7302/189
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePrice, C. P., Swift, D. W., & Lee, L. C. ( 1986 ). Numerical simulation of nonoscillatory mirror waves at the Earth’s magnetosheath. Journal of Geophysical Research, 91 ( A1 ), 101 – 112. https://doi.org/10.1029/JA091iA01p00101
dc.identifier.citedreferenceHuang, S. Y., Sahraoui, F., Deng, X. H., He, J. S., Yuan, Z. G., Zhou, M., et al. ( 2014 ). Kinetic turbulence in the terrestrial magnetosheath: Cluster observations. The Astrophysical Journal Letters, 789 ( 2 ), L28. https://doi.org/10.1088/2041-8205/789/2/L28
dc.identifier.citedreferenceHuang, S. Y., Wang, Q. Y., Sahraoui, F., Yuan, Z. G., Liu, Y. J., Deng, X. H., et al. ( 2020 ). Analysis of turbulence properties in the Mercury plasma environment using MESSENGER observations. Acta Pathologica Japonica, 891 ( 2 ), 159. https://doi.org/10.3847/1538-4357/ab7349
dc.identifier.citedreferenceKasper, J. C., Abiad, R., Austin, G., Balat‐Pichelin, M., Bale, S. D., Belcher, J. W., et al. ( 2016 ). Solar wind electrons alphas and protons (sweap) investigation: Design of the solar wind and coronal plasma instrument suite for solar probe plus. Space Science Reviews, 204 ( 1 ), 131 – 186. https://doi.org/10.1007/s11214-015-0206-3
dc.identifier.citedreferenceKawazura, Y., Barnes, M., & Schekochihin, A. A. ( 2019 ). Thermal disequilibration of ions and electrons by collisionless plasma turbulence. Proceedings of the National Academy of Science, 116 ( 3 ), 771 – 776. https://doi.org/10.1073/pnas.1812491116
dc.identifier.citedreferenceKiyani, K. H., Chapman, S. C., & Hnat, B. ( 2006 ). Extracting the scaling exponents of a self‐affine, non‐Gaussian process from a finite‐length time series. Physical Review E, 74 ( 5 ), 051122. https://doi.org/10.1103/PhysRevE.74.051122
dc.identifier.citedreferenceKiyani, K. H., Chapman, S. C., Khotyaintsev, Y. V., Dunlop, M. W., & Sahraoui, F. ( 2009 ). Global scale‐invariant dissipation in collisionless plasma turbulence. Physical Review Letters, 103 ( 7 ), 075006. https://doi.org/10.1103/PhysRevLett.103.075006
dc.identifier.citedreferenceKiyani, K. H., Osman, K. T., & Chapman, S. C. ( 2015 ). Dissipation and heating in solar wind turbulence: From the macro to the micro and back again. Philosophical Transactions of the Royal Society of London Series A, 373 ( 2041 ), 20140155. https://doi.org/10.1098/rsta.2014.0155
dc.identifier.citedreferenceKletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al. ( 2013 ). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Science Reviews, 179 ( 1–4 ), 127 – 181. https://doi.org/10.1007/s11214-013-9993-6
dc.identifier.citedreferenceLeamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K. ( 1998 ). Observational constraints on the dynamics of the interplanetary magnetic field dissipation range. Journal of Geophysical Research, 103 ( A3 ), 4775 – 4788. https://doi.org/10.1029/97JA03394
dc.identifier.citedreferenceMalaspina, D. M., Ergun, R. E., Bolton, M., Kien, M., Summers, D., Stevens, K., et al. ( 2016 ). The digital fields board for the FIELDS instrument suite on the solar probe plus mission: Analog and digital signal processing. Journal of Geophysical Research: Space Physics, 121, 5088 – 5096. https://doi.org/10.1002/2016JA022344
dc.identifier.citedreferenceMallet, A., Klein, K. G., Chand ran, B. D. G., Grošelj, D., Hoppock, I. W., Bowen, T. A., et al. ( 2019 ). Interplay between intermittency and dissipation in collisionless plasma turbulence. Journal of Plasma Physics, 85 ( 3 ), 175850302. https://doi.org/10.1017/S0022377819000357
dc.identifier.citedreferenceMatthaeus, W. H., & Goldstein, M. L. ( 1982 ). Measurement of the rugged invariants of magnetohydrodynamic turbulence in the solar wind. Journal of Geophysical Research, 87 ( A8 ), 6011 – 6028. https://doi.org/10.1029/JA087iA08p06011
dc.identifier.citedreferenceMatthaeus, W. H., Wan, M., Servidio, S., Greco, A., Osman, K. T., Oughton, S., & Dmitruk, P. ( 2015 ). Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 373 ( 2041 ). https://doi.org/10.1098/rsta.2014.0154
dc.identifier.citedreferenceMcFadden, J. P., Carlson, C. W., Larson, D., Ludlam, M., Abiad, R., Elliott, B., et al. ( 2008 ). The THEMIS ESA plasma instrument and in‐flight calibration. Space Science Reviews, 141 ( 1–4 ), 277 – 302. https://doi.org/10.1007/s11214-008-9440-2
dc.identifier.citedreferenceMonin, A. S., & Yaglom, A. M. ( 1971 ). Statistical fluid mechanics ( 2 ). Cambridge, MA: MIT Press.
dc.identifier.citedreferenceMonin, A. S., & Yaglom, A. M. ( 1975 ). Statistical fluid mechanics. Cambridge, MA: MIT Press. https://ui.adsabs.harvard.edu/abs/1971sfmm.book
dc.identifier.citedreferencePaschmann, G., & Daly, P. W. ( 1998 ). Analysis methods for multi‐spacecraft data. ISSI Scientific Reports Series SR‐001. ESA/ISSI, vol. 1 isbn 1608‐280x, 1998. ISSI Scientific Reports Series, 1. Retrieved from http://hdl.handle.net/11858/00-001M-0000-0014-D93A-D
dc.identifier.citedreferencePope, S. A., Balikhin, M. A., Zhang, T. L., Fedorov, A. O., Gedalin, M., & Barabash, S. ( 2009 ). Giant vortices lead to ion escape from Venus and re‐distribution of plasma in the ionosphere. Geophysical Research Letters, 36 ( 7 ), L07202. https://doi.org/10.1029/2008GL036977
dc.identifier.citedreferencePulupa, M., Bale, S. D., Bonnell, J. W., Bowen, T. A., Carruth, N., Goetz, K., et al. ( 2017 ). The solar probe plus radio frequency spectrometer: Measurement requirements, analog design, and digital signal processing. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2836 – 2854. https://doi.org/10.1002/2016JA023345
dc.identifier.citedreferenceRezeau, L., Belmont, G., Cornilleau‐Wehrlin, N., Reberac, F., & Briand, C. ( 1999 ). Spectral law and polarization properties of the low‐frequency waves at the magnetopause. Geophysical Research Letters, 26 ( 6 ), 651 – 654. https://doi.org/10.1029/1999GL900060
dc.identifier.citedreferenceRuhunusiri, S., Halekas, J. S., Espley, J. R., Mazelle, C., Brain, D., Harada, Y., et al. ( 2017 ). Characterization of turbulence in the Mars plasma environment with MAVEN observations. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 656 – 674. https://doi.org/10.1002/2016JA023456
dc.identifier.citedreferenceRussell, C. T., Leinweber, H., Hart, R. A., Wei, H. Y., Strangeway, R. J., & Zhang, T. L. ( 2013 ). Venus Express observations of ULF and ELF waves in the Venus ionosphere: Wave properties and sources. Icarus, 226 ( 2 ), 1527 – 1537. https://doi.org/10.1016/j.icarus.2013.08.019
dc.identifier.citedreferenceRussell, C. T., Mayerberger, S. S., & Blanco‐Cano, X. ( 2006 ). Proton cyclotron waves at Mars and Venus. Advances in Space Research, 38 ( 4 ), 745 – 751. https://doi.org/10.1016/j.asr.2005.02.091
dc.identifier.citedreferenceSahraoui, F., Belmont, G., Rezeau, L., Cornilleau‐Wehrlin, N., Pinçon, J. L., & Balogh, A. ( 2006 ). Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the cluster spacecraft. Physical Review Letters, 96 ( 7 ), 075002. https://doi.org/10.1103/PhysRevLett.96.075002
dc.identifier.citedreferenceSahraoui, F., Goldstein, M. L., Belmont, G., Canu, P., & Rezeau, L. ( 2010 ). Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind. Physical Review Letters, 105 ( 13 ), 131101. https://doi.org/10.1103/PhysRevLett.105.131101
dc.identifier.citedreferenceSahraoui, F., Goldstein, M. L., Robert, P., & Khotyaintsev, Y. V. ( 2009 ). Evidence of a cascade and dissipation of solar‐wind turbulence at the electron gyroscale. Physical Review Letters, 102 ( 23 ), 231102. https://doi.org/10.1103/PhysRevLett.102.231102
dc.identifier.citedreferenceSahraoui, F., Huang, S. Y., Belmont, G., Goldstein, M. L., Rétino, A., Robert, P., & De Patoul, J. ( 2013 ). Scaling of the electron dissipation range of solar wind turbulence. Acta Pathologica Japonica, 777 ( 1 ), 15. https://doi.org/10.1088/0004-637X/777/1/15
dc.identifier.citedreferenceSaur, J. ( 2004 ). Turbulent heating of Jupiter’s middle magnetosphere. The Astrophysical Journal Letters, 602 ( 2 ), L137 – L140. https://doi.org/10.1086/382588
dc.identifier.citedreferenceSchekochihin, A. A., Cowley, S. C., Dorland, W., Hammett, G. W., Howes, G. G., Quataert, E., & Tatsuno, T. ( 2009 ). Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas. The Astrophysical Journal Supplement, 182, 310 – 377. https://doi.org/10.1088/0067-0049/182/1/310
dc.identifier.citedreferenceSorriso‐Valvo, L., Carbone, V., Veltri, P., Consolini, G., & Bruno, R. ( 1999 ). Intermittency in the solar wind turbulence through probability distribution functions of fluctuations. Geophysical Research Letters, 26 ( 13 ), 1801 – 1804. https://doi.org/10.1029/1999GL900270
dc.identifier.citedreferenceSouthwood, D. J., & Kivelson, M. G. ( 1993 ). Mirror instability. I ‐ physical mechanism of linear instability. Journal of Geophysical References, 98 ( A6 ), 9181 – 9187. https://doi.org/10.1029/92JA02837
dc.identifier.citedreferenceStrangeway, R. J. ( 2004 ). Plasma waves and electromagnetic radiation at Venus and Mars. Advances in Space Research, 33 ( 11 ), 1956 – 1967. https://doi.org/10.1016/j.asr.2003.08.040
dc.identifier.citedreferenceSundkvist, D., Retino, A., Vaivads, A., & Bale, S. D. ( 2007 ). Dissipation in turbulent plasma due to reconnection in thin current sheets. Physical Review Letters, 99, 025004. https://doi.org/10.1103/PhysRevLett.99.025004
dc.identifier.citedreferenceTao, C., Sahraoui, F., Fontaine, D., Patoul, J., Chust, T., Kasahara, S., & Retinò, A. ( 2015 ). Properties of Jupiter’s magnetospheric turbulence observed by the Galileo spacecraft. Journal of Geophysical Research: Space Physics, 120 ( 4 ), 2477 – 2493. https://doi.org/10.1002/2014JA020749
dc.identifier.citedreferenceTessein, J. A., Matthaeus, W. H., Wan, M., Osman, K. T., Ruffolo, D., & Giacalone, J. ( 2013 ). Association of suprathermal particles with coherent structures and shocks. The Astrophysical Journal Letters, 776 ( 1 ), L8. https://doi.org/10.1088/2041-8205/776/1/L8
dc.identifier.citedreferenceUritsky, V. M., Slavin, J. A., Khazanov, G. V., Donovan, E. F., Boardsen, S. A., Anderson, B. J., & Korth, H. ( 2011 ). Kinetic‐scale magnetic turbulence and finite Larmor radius effects at Mercury. Journal of Geophysical Research, 116 ( A9 ), A09236. https://doi.org/10.1029/2011JA016744
dc.identifier.citedreferenceVolwerk, M., Schmid, D., Tsurutani, B. T., Delva, M., Plaschke, F., Narita, Y., et al. ( 2016 ). Mirror mode waves in Venus’s magnetosheath: Solar minimum vs. solar maximum. Annales Geophysicae, 34 ( 11 ), 1099 – 1108. https://doi.org/10.5194/angeo-34-1099-2016
dc.identifier.citedreferenceVolwerk, M., Zhang, T. L., Delva, M., Vörös, Z., Baumjohann, W., & Glassmeier, K. H. ( 2008 ). Mirror‐mode‐like structures in Venus’ induced magnetosphere. Journal of Geophysical Research, 113 ( 15 ), E00B16. https://doi.org/10.1029/2008JE003154
dc.identifier.citedreferencevon Papen, M., Saur, J., & Alexandrova, O. ( 2014 ). Turbulent magnetic field fluctuations in Saturn’s magnetosphere. Journal of Geophysical Research: Space Physics, 119 ( 4 ), 2797 – 2818. https://doi.org/10.1002/2013JA019542
dc.identifier.citedreferenceVörös, Z., Zhang, T. L., Leaner, M. P., Volwerk, M., Delva, M., & Baumjohann, W. ( 2008 ). Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake. Journal of Geophysical Research, 113 ( E12 ), E00B21. https://doi.org/10.1029/2008JE003159
dc.identifier.citedreferenceVörös, Z., Zhang, T. L., Leubner, M. P., Volwerk, M., Delva, M., Baumjohann, W., & Kudela, K. ( 2008 ). Magnetic fluctuations and turbulence in the Venus magnetosheath and wake. Geophysical Research Letters, 35 ( 11 ), L11102. https://doi.org/10.1029/2008GL033879
dc.identifier.citedreferenceWalker, S. N., Balikhin, M. A., Zhang, T. L., Gedalin, M. E., Pope, S. A., Dimmock, A. P., & Fedorov, A. O. ( 2011 ). Unusual nonlinear waves in the Venusian magnetosheath. Journal of Geophysical Research, 116 ( A1 ), A01215. https://doi.org/10.1029/2010JA015916
dc.identifier.citedreferenceWhittlesey, P. L., Larson, D. E., Kasper, J. C., Halekas, J., Abatcha, M., Abiad, R., et al. ( 2020 ). The Solar Probe ANalyzers—electrons on the parker solar probe. The Astrophysical Journal Supplement Series, 246 ( 2 ), 74. https://doi.org/10.3847/1538-4365/ab7370
dc.identifier.citedreferenceWolff, R. S., Goldstein, B. E., & Yeates, C. M. ( 1980 ). The onset and development of Kelvin‐Helmholtz instability at the Venus ionopause. Journal of Geophysical References, 85, 7697 – 7707. https://doi.org/10.1029/JA085iA13p07697
dc.identifier.citedreferenceWygant, J. R., Bonnell, J. W., Goetz, K., Ergun, R. E., Mozer, F. S., Bale, S. D., et al. ( 2013 ). The electric field and waves instruments on the radiation belt storm probes mission. Space Science Reviews, 179 ( 1–4 ), 183 – 220. https://doi.org/10.1007/s11214-013-0013-7
dc.identifier.citedreferenceXiao, S. D., Zhang, T. L., & Vörös, Z. ( 2018 ). Magnetic fluctuations and turbulence in the Venusian magnetosheath downstream of different types of bow shock. Journal of Geophysical Research: Space Physics, 123 ( 10 ), 8219 – 8226. https://doi.org/10.1029/2018JA025250
dc.identifier.citedreferenceXiao, S. D., Zhang, T. L., Vörös, Z., Wu, M. Y., Wang, G. Q., & Chen, Y. Q. ( 2020 ). Turbulence near the Venusian bow shock: Venus express observations. Journal of Geophysical Research: Space Physics, 125 ( 2 ), e27190. https://doi.org/10.1029/2019JA027190
dc.identifier.citedreferenceZhang, T. L., Delva, M., Baumjohann, W., Auster, H. U., Carr, C., Russell, C. T., et al. ( 2007 ). Little or no solar wind enters Venus’ atmosphere at solar minimum. Nature, 450 ( 7170 ), 654 – 656. https://doi.org/10.1038/nature06026
dc.identifier.citedreferenceZhao, J. S., Voitenko, Y. M., Wu, D. J., & Yu, M. Y. ( 2016 ). Kinetic Alfvén turbulence below and above ion cyclotron frequency. Journal of Geophysical Research: Space Physics, 121 ( 1 ), 5 – 18. https://doi.org/10.1002/2015JA021959
dc.identifier.citedreferenceAlexandrova, O. ( 2008 ). Solar wind vs. magnetosheath turbulence and Alfvén vortices. Nonlinear Processes in Geophysics, 15, 95.
dc.identifier.citedreferenceAlexandrova, O., Lacombe, C., & Mangeney, A. ( 2008 ). Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations. Annales Geophysicae, 26 ( 11 ), 3585 – 3596. https://doi.org/10.5194/angeo-26-3585-2008
dc.identifier.citedreferenceAlexandrova, O., Lacombe, C., Mangeney, A., Grappin, R., & Maksimovic, M. ( 2012 ). Solar wind turbulent spectrum at plasma kinetic scales. Acta Pathologica Japonica, 760 ( 2 ), 121. https://doi.org/10.1088/0004-637X/760/2/121
dc.identifier.citedreferenceAlexandrova, O., Saur, J., Lacombe, C., Mangeney, A., Mitchell, J., Schwartz, S. J., & Robert, P. ( 2009 ). Universality of solar‐wind turbulent spectrum from MHD to electron scales. Physical Review Letters, 103 ( 16 ), 165003. https://doi.org/10.1103/PhysRevLett.103.165003
dc.identifier.citedreferenceAmerstorfer, U. V., Erkaev, N. V., Langmayr, D., & Biernat, H. K. ( 2007 ). On Kelvin Helmholtz instability due to the solar wind interaction with unmagnetized planets. Planetary and Space Science, 55 ( 12 ), 1811 – 1816. https://doi.org/10.1016/j.pss.2007.01.015
dc.identifier.citedreferenceBale, S. D., Goetz, K., Harvey, P. R., Turin, P., Bonnell, J. W., Dudok de Wit, T., et al. ( 2016 ). The FIELDS Instrument Suite for Solar Probe Plus. Measuring the coronal plasma and magnetic field, plasma waves and turbulence, and radio signatures of solar transients. Space Science Reviews, 204, 49 – 82. https://doi.org/10.1007/s11214-016-0244-5
dc.identifier.citedreferenceBale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C., & Sundkvist, D. ( 2009 ). Magnetic fluctuation power near proton temperature anisotropy instability thresholds in the solar wind. Physical Review Letters, 103 ( 21 ), 211101. https://doi.org/10.1103/PhysRevLett.103.211101
dc.identifier.citedreferenceBalikhin, M. A., Zhang, T. L., Gedalin, M., Ganushkina, N. Y., & Pope, S. A. ( 2008 ). Venus Express observes a new type of shock with pure kinematic relaxation. Geophysical Research Letters, 35 ( 1 ), L01103. https://doi.org/10.1029/2007GL032495
dc.identifier.citedreferenceBandyopadhyay, R., Matthaeus, W. H., Parashar, T. N., Chhiber, R., Chasapis, A., Ruffolo, D., et al. ( 2020 ). Observations of energetic‐particle population enhancements along intermittent structures near the sun from parker solar probe. The Astrophysical Journal Supplemental Series, 246 ( 2 ), 61. https://doi.org/10.3847/1538-4365/ab6220
dc.identifier.citedreferenceBoldyrev, S., & Perez, J. C. ( 2012 ). Spectrum of kinetic‐Alfvén turbulence. The Astrophysical Journal Letters, 758 ( 2 ), L44. https://doi.org/10.1088/2041-8205/758/2/L44
dc.identifier.citedreferenceBowen, T. A., Bale, S. D., Bonnell, J. W., Dudok de Wit, T., Goetz, K., Goodrich, K., et al. ( 2020 ). A merged search‐coil and fluxgate magnetometer data product for parker solar probe FIELDS. Journal of Geophysical Research: Space Physics, 125 ( 5 ), e27813. https://doi.org/10.1029/2020JA027813
dc.identifier.citedreferenceBowen, T. A., Mallet, A., Bale, S. D., Bonnell, J. W., Case, A. W., Chandran, B. D. G., et al. ( 2020 ). Constraining ion‐scale heating and spectral energy transfer in observations of plasma turbulence. Physical Review Letters, 125 ( 2 ), 025102. https://doi.org/10.1103/PhysRevLett.125.025102
dc.identifier.citedreferenceBowen, T. A., Mallet, A., Huang, J., Klein, K. G., Malaspina, D. M., Stevens, M., et al. ( 2020 ). Ion‐scale electromagnetic waves in the inner heliosphere. Astrophysical Journal, Supplement Series, 246 ( 2 ), 66. https://doi.org/10.3847/1538-4365/ab6c65
dc.identifier.citedreferenceBruno, R., & Carbone, V. ( 2005 ). The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 2 ( 1 ), 4. https://doi.org/10.12942/lrsp-2005-4
dc.identifier.citedreferenceBurgess, D., Lucek, E. A., Scholer, M., Bale, S. D., Balikhin, M. A., Balogh, A., et al. ( 2005 ). Quasi‐parallel shock structure and processes. Space Science Reviews, 118 ( 1–4 ), 205 – 222. https://doi.org/10.1007/s11214-005-3832-3
dc.identifier.citedreferenceCase, A. W., Kasper, J. C., Stevens, M. L., Korreck, K. E., Paulson, K., Daigneau, P., et al. ( 2020 ). The Solar Probe Cup on the parker solar probe. Astrophysical Journal, Supplement Series, 246 ( 2 ), 43. https://doi.org/10.3847/1538-4365/ab5a7b
dc.identifier.citedreferenceChen, C. H. K. ( 2016 ). Recent progress in astrophysical plasma turbulence from solar wind observations. Journal of Plasma Physics, 82 ( 6 ), 535820602. https://doi.org/10.1017/S0022377816001124
dc.identifier.citedreferenceChen, C. H. K., & Boldyrev, S. ( 2017 ). Nature of kinetic scale turbulence in the Earth’s magnetosheath. Acta Pathologica Japonica, 842 ( 2 ), 122. https://doi.org/10.3847/1538-4357/aa74e0
dc.identifier.citedreferenceChen, C. H. K., Boldyrev, S., Xia, Q., & Perez, J. ( 2013 ). Nature of subproton scale turbulence in the solar wind. Physical Review Letters, 110 ( 22 ), 225002.
dc.identifier.citedreferenceVerscharen, D., Klein, K. G., & Maruca, B. A. ( 2019 ). The multi‐scale nature of the solar wind. Living Reviews in Solar Physics, 16 ( 1 ), 5. https://doi.org/10.1007/s41116-019-0021-0
dc.identifier.citedreferenceChen, C. H. K., Horbury, T. S., Schekochihin, A. A., Wicks, R. T., Alexandrova, O., & Mitchell, J. ( 2010 ). Anisotropy of solar wind turbulence between ion and electron scales. Physical Review Letters, 104 ( 25 ), 255002. https://doi.org/10.1103/PhysRevLett.104.255002
dc.identifier.citedreferenceChen, C. H. K., Matteini, L., Schekochihin, A. A., Stevens, M. L., Salem, C. S., Maruca, B. A., et al. ( 2016 ). Multi‐species measurements of the Firehose and mirror instability thresholds in the solar wind. The Astrophysical Journal Letters, 825 ( 2 ), L26. https://doi.org/10.3847/2041-8205/825/2/L26
dc.identifier.citedreferenceChen, C. H. K., Sorriso‐Valvo, L., Šafránková, J., & Němeček, Z. ( 2014 ). Intermittency of solar wind density fluctuations from ion to electron scales. The Astrophysical Journal Letters, 789 ( 1 ), L8. https://doi.org/10.1088/2041-8205/789/1/L8
dc.identifier.citedreferenceChhiber, R., Chasapis, A., Bandyopadhyay, R., Parashar, T. N., Matthaeus, W. H., Maruca, B. A., et al. ( 2018 ). Higher‐order turbulence statistics in the Earth’s magnetosheath and the solar wind using magnetospheric multiscale observations. Journal of Geophysical Research: Space Physics, 123 ( 12 ), 9941 – 9954. https://doi.org/10.1029/2018JA025768
dc.identifier.citedreferenceCho, J., & Lazarian, A. ( 2009 ). Simulations of electron magnetohydrodynamic turbulence. Acta Pathologica Japonica, 701 ( 1 ), 236 – 252. https://doi.org/10.1088/0004-637X/701/1/236
dc.identifier.citedreferenceColeman, P. J. ( 1968 ). Turbulence, viscosity, and dissipation in the solar wind plasma. The Astrophysical Journal, 153, 371 – 388. https://doi.org/10.1086/149674
dc.identifier.citedreferenceCzaykowska, A., Bauer, T. M., Treumann, R. A., & Baumjohann, W. ( 2001 ). Magnetic field fluctuations across the Earth’s bow shock. Annales Geophysicae, 19 ( 3 ), 275 – 287. https://doi.org/10.5194/angeo-19-275-2001
dc.identifier.citedreferenceDelva, M., Bertucci, C., Volwerk, M., Lundin, R., Mazelle, C., & Romanelli, N. ( 2015 ). Upstream proton cyclotron waves at Venus near solar maximum. Journal of Geophysical Research: Space Physics, 120 ( 1 ), 344 – 354. https://doi.org/10.1002/2014JA020318
dc.identifier.citedreferenceDudok de Wit, T. ( 2004 ). Can high‐order moments be meaningfully estimated from experimental turbulence measurements? Physical Review E, 70 ( 5 ), 055302. https://doi.org/10.1103/PhysRevE.70.055302
dc.identifier.citedreferenceDudok de Wit, T., & Krasnoselkikh, V. V. ( 1996 ). Non‐Gaussian statistics in space plasma turbulence: Fractal properties and pitfalls. Nonlinear Processes in Geophysics, 3 ( 4 ), 262 – 273. https://doi.org/10.5194/npg-3-262-1996
dc.identifier.citedreferenceDwivedi, N. K., Schmid, D., Narita, Y., Kovács, P., Vörös, Z., Delva, M., & Zhang, T. ( 2015 ). Statistical investigation on the power‐law behavior of magnetic fluctuations in the Venusian magnetosheath. Earth, Planets, and Space, 67, 137. https://doi.org/10.1186/s40623-015-0308-x
dc.identifier.citedreferenceFarge, M. ( 1992 ). Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics, 24, 395 – 457. https://doi.org/10.1146/annurev.fl.24.010192.002143
dc.identifier.citedreferenceFarge, M., & Schneider, K. ( 2015 ). Wavelet transforms and their applications to MHD and plasma turbulence: A review. Journal of Plasma Physics, 81 ( 6 ), 435810602. https://doi.org/10.1017/S0022377815001075
dc.identifier.citedreferenceFox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., et al. ( 2016 ). The solar probe plus mission: Humanity’s first visit to our star. Space Science Reviews, 204 ( 1 ), 7 – 48. https://doi.org/10.1007/s11214-015-0211-6
dc.identifier.citedreferenceFranci, L., Landi, S., Matteini, L., Verdini, A., & Hellinger, P. ( 2015 ). High‐resolution hybrid simulations of kinetic plasma turbulence at proton scales. The Astrophysical Journal, 812 ( 1 ), 21. https://doi.org/10.1088/0004-637X/812/1/21
dc.identifier.citedreferenceFranci, L., Landi, S., Matteini, L., Verdini, A., & Hellinger, P. ( 2016 ). Plasma beta dependence of the ion‐scale spectral break of solar wind turbulence: High‐resolution 2D hybrid simulations. The Astrophysical Journal, 833 ( 1 ), 91. https://doi.org/10.3847/1538-4357/833/1/91
dc.identifier.citedreferenceFrisch, U. ( 1995 ). Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press. ISBN‐10: 0521457130.
dc.identifier.citedreferenceFutaana, Y., Stenberg Wieser, G., Barabash, S., & Luhmann, J. G. ( 2017 ). Solar wind interaction and impact on the Venus atmosphere. Space Science Reviews, 212 ( 3–4 ), 1453 – 1509. https://doi.org/10.1007/s11214-017-0362-8
dc.identifier.citedreferenceGary, S. P. ( 1992 ). The mirror and ion cyclotron anisotropy instabilities. Journal of Geophysical Research, 97 ( A6 ), 8519 – 8529. https://doi.org/10.1029/92JA00299
dc.identifier.citedreferenceGolbraikh, E., Gedalin, M., Balikhin, M., & Zhang, T. L. ( 2013 ). Large amplitude nonlinear waves in Venus magnetosheath. Journal of Geophysical Research: Space Physics, 118 ( 4 ), 1706 – 1710. https://doi.org/10.1002/jgra.50094
dc.identifier.citedreferenceGoodrich, K. A. ( 2020 ). Electron holes at Venus. GRL. This Issue.
dc.identifier.citedreferenceGrošelj, D., Mallet, A., Loureiro, N. F., & Jenko, F. ( 2018 ). Fully kinetic simulation of 3D kinetic Alfvén turbulence. Physical Review Letters, 120 ( 10 ), 105101. https://doi.org/10.1103/PhysRevLett.120.105101
dc.identifier.citedreferenceHadid, L. Z., Sahraoui, F., Kiyani, K. H., Retinò, A., Modolo, R., Canu, P., et al. ( 2015 ). Nature of the MHD and kinetic scale turbulence in the magnetosheath of Saturn: Cassini observations. The Astrophysical Journal Letters, 813 ( 2 ), L29. https://doi.org/10.1088/2041-8205/813/2/L29
dc.identifier.citedreferenceHellinger, P., Trávníček, P., Kasper, J. C., & Lazarus, A. J. ( 2006 ). Solar wind proton temperature anisotropy: Linear theory and WIND/SWE observations. Geophysical Research Letters, 33, L09101. https://doi.org/10.1029/2006GL025925
dc.identifier.citedreferenceHnat, B., Chapman, S. C., Rowlands, G., Watkins, N. W., & Farrell, W. M. ( 2002 ). Finite size scaling in the solar wind magnetic field energy density as seen by WIND. Geophysical Research Letters, 29 ( 10 ), 1446. https://doi.org/10.1029/2001GL014587
dc.identifier.citedreferenceHowes, G. G., Cowley, S. C., Dorland, W., Hammett, G. W., Quataert, E., & Schekochihin, A. A. ( 2007 ). Dissipation‐scale turbulence in the solar wind. AIP Conference Proceedings, 932 ( 1 ), pp. 3 – 8. https://doi.org/10.1063/1.2778938
dc.identifier.citedreferenceHowes, G. G., Tenbarge, J. M., Dorland, W., Quataert, E., Schekochihin, A. A., Numata, R., & Tatsuno, T. ( 2011 ). Gyrokinetic simulations of solar wind turbulence from ion to electron scales. Physical Review Letters, 107 ( 3 ), 035004. https://doi.org/10.1103/PhysRevLett.107.035004
dc.identifier.citedreferenceHuang, S. Y., Hadid, L. Z., Sahraoui, F., Yuan, Z. G., & Deng, X. H. ( 2017 ). On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence. The Astrophysical Journal Letters, 836 ( 1 ), L10. https://doi.org/10.3847/2041-8213/836/1/L10
dc.working.doi10.7302/189en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.