Show simple item record

An experimentally validated heat and mass transfer model for wax deposition from flowing oil onto a cold surface

dc.contributor.authorMahir, Luqman Hakim Ahmad
dc.contributor.authorLee, Jieun
dc.contributor.authorFogler, H. Scott
dc.contributor.authorLarson, Ronald G.
dc.date.accessioned2021-02-04T21:54:47Z
dc.date.available2022-03-04 16:54:46en
dc.date.available2021-02-04T21:54:47Z
dc.date.issued2021-02
dc.identifier.citationMahir, Luqman Hakim Ahmad; Lee, Jieun; Fogler, H. Scott; Larson, Ronald G. (2021). "An experimentally validated heat and mass transfer model for wax deposition from flowing oil onto a cold surface." AIChE Journal 67(2): n/a-n/a.
dc.identifier.issn0001-1541
dc.identifier.issn1547-5905
dc.identifier.urihttps://hdl.handle.net/2027.42/166279
dc.description.abstractA transport model is proposed for wax deposition onto a cold finger from flowing wax‐containing oils. The model solves transient energy and mass balances simultaneously for a reversible first‐order kinetic rate for precipitation of pseudo‐single‐component wax, and the effects of yield stress using a critical solid wax concentration to withstand flow‐induced stress at the deposit‐fluid interface. The model can predict the time evolution of the deposit thickness, and the spatial and temporal evolution of temperature and wax concentration as validated using cold finger experiments. It was found that for high wax content oils, deposit thickness growth is dominated by heat transfer. For low wax content oils that are unable to gel, the thickness growth is slow and accompanied by occasional sloughing. Regardless of the mechanism controlling the growth, mass transfer cannot be neglected as wax diffusion into the deposit continues to take place after the deposit has stopped growing.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherwax deposition
dc.subject.othermoving boundary problem
dc.subject.othermathematical modeling
dc.subject.othermass transfer
dc.subject.otherheat transfer
dc.titleAn experimentally validated heat and mass transfer model for wax deposition from flowing oil onto a cold surface
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166279/1/aic17063.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166279/2/aic17063_am.pdf
dc.identifier.doi10.1002/aic.17063
dc.identifier.doihttps://dx.doi.org/10.7302/202
dc.identifier.sourceAIChE Journal
dc.identifier.citedreferenceHaj‐Shafiei S, Serafini D, Mehrotra AK. A steady‐state heat‐transfer model for solids deposition from waxy mixtures in a pipeline. Fuel. 2014; 137 ( 1 ): 346 ‐ 359. https://doi.org/10.1016/j.fuel.2014.07.098.
dc.identifier.citedreferenceKasumu AS, Mehrotra AK. Solids deposition from wax‐solvent‐water “waxy” mixtures using a cold finger apparatus. Energy Fuel. 2015; 29 ( 2 ): 501 ‐ 511. https://doi.org/10.1021/ef501835b.
dc.identifier.citedreferenceCrank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat‐conduction type. Math Proc Cambridge Philos Soc. 1947; 43: 50 ‐ 67. https://doi.org/10.1017/S0305004100023197.
dc.identifier.citedreferenceCussler EL, Hughes SE, Ward WJ, Aris R. Barrier membranes. J Membr Sci. 1988; 38 ( 2 ): 161 ‐ 174. https://doi.org/10.1016/S0376-7388(00)80877-7.
dc.identifier.citedreferenceHayduk W, Minhas BS. Correlations for prediction of molecular diffusivities in liquids. Can J Chem Eng. 1982; 60 ( 2 ): 295 ‐ 299. https://doi.org/10.1002/cjce.5450600213.
dc.identifier.citedreferenceSingh A, Lee HS, Singh P, Sarica C. Flow assurance: validation of wax deposition models using field data from a subsea pipeline. Paper presented at: Offshore Technology Conference; 2011. doi: https://doi.org/10.4043/21641-ms
dc.identifier.citedreferenceSingh P, Venkatesan R, Scott Fogler H, Nagarajan NR. Morphological evolution of thick wax deposits during aging. AIChE J. 2001; 47 ( 1 ): 6 ‐ 18. https://doi.org/10.1002/aic.690470103.
dc.identifier.citedreferenceSingh P, Youyen A, Fogler HS. Existence of a critical carbon number in the aging of a wax‐oil gel. AIChE J. 2001; 47 ( 9 ): 2111 ‐ 2124. https://doi.org/10.1002/aic.690470921.
dc.identifier.citedreferenceTiwary R, Mehrotra AK. Deposition from wax‐solvent mixtures under turbulent flow: effects of shear rate and time on deposit properties. Energy Fuel. 2009; 23 ( 3 ): 1299 ‐ 1310. https://doi.org/10.1021/ef800591p.
dc.identifier.citedreferenceBhat NV, Mehrotra AK. Modeling of deposit formation from “waxy” mixtures via moving boundary formulation: radial heat transfer under static and laminar flow conditions. Ind Eng Chem Res. 2005; 44 ( 17 ): 6948 ‐ 6962. https://doi.org/10.1021/ie050149p.
dc.identifier.citedreferenceCrank J. Free and Moving Boundary Problems. Oxford: Clarendon Press; 1984.
dc.identifier.citedreferenceMahir LHA, Vilas Bôas Fávero C, Ketjuntiwa T, Fogler HS, Larson RG. Mechanism of wax deposition on cold surfaces: gelation and deposit aging. Energy Fuel. 2019; 33 ( 5 ): 3776 ‐ 3786. https://doi.org/10.1021/acs.energyfuels.8b03139.
dc.identifier.citedreferenceBidmus H, Mehrotra AK. Measurement of the liquid‐deposit interface temperature during solids deposition from wax‐solvent mixtures under sheared cooling. Energy Fuel. 2008; 22 ( 6 ): 4039 ‐ 4048. https://doi.org/10.1021/ef800542a.
dc.identifier.citedreferenceArumugam S, Kasumu AS, Mehrotra AK. Modeling the static cooling of wax‐solvent mixtures in a cylindrical vessel. Paper presented at: Proceedings of the Biennial International Pipeline Conference, IPC; 2012. doi: https://doi.org/10.1115/IPC2012-90691
dc.identifier.citedreferenceBidmus HO, Mehrotra AK. Solids deposition during “cold flow” of wax‐solvent mixtures in a flow‐loop apparatus with heat transfer. Energy Fuel. 2009; 23 ( 6 ): 3184 ‐ 3194. https://doi.org/10.1021/ef900224r.
dc.identifier.citedreferenceBidmus H, Mehrotra AK. Measurement of the liquid‐deposit interface temperature during solids deposition from wax‐solvent mixtures under static cooling conditions. Energy Fuel. 2008; 22 ( 2 ): 1174 ‐ 1182. https://doi.org/10.1021/ef700588y.
dc.identifier.citedreferenceRice Richard G., Do Duong D. Applied Mathematics and Modeling for Chemical Engineers. 2nd ed. Hoboken, New Jersey: Wiley; 2012.
dc.identifier.citedreferenceArumugam S, Kasumu AS, Mehrotra AK. Modeling of solids deposition from “waxy” mixtures in “hot flow” and “cold flow” regimes in a pipeline operating under turbulent flow. Energy Fuel. 2013; 27: 6477 ‐ 6490. https://doi.org/10.1021/ef401315m.
dc.identifier.citedreferenceSingh P, Venkatesan R, Fogler HS, Nagarajan N. Formation and aging of incipient thin film wax‐oil gels. AIChE J. 2000; 46 ( 5 ): 1059 ‐ 1074. https://doi.org/10.1002/aic.690460517.
dc.identifier.citedreferenceHuang Z, Lee HS, Senra M, Scott FH. A fundamental model of wax deposition in subsea oil pipelines. AIChE J. 2011; 57 ( 11 ): 2955 ‐ 2964. https://doi.org/10.1002/aic.12517.
dc.working.doi10.7302/202en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.