Show simple item record

Microbial and host‐derived biomarker changes during ligature‐induced and spontaneous peri‐implantitis in the Beagle dog

dc.contributor.authorMonje, Alberto
dc.contributor.authorEick, Sigrun
dc.contributor.authorBuser, Daniel
dc.contributor.authorSalvi, Giovanni E.
dc.date.accessioned2021-02-04T21:55:02Z
dc.date.available2022-02-04 16:55:01en
dc.date.available2021-02-04T21:55:02Z
dc.date.issued2021-01
dc.identifier.citationMonje, Alberto; Eick, Sigrun; Buser, Daniel; Salvi, Giovanni E. (2021). "Microbial and host‐derived biomarker changes during ligature‐induced and spontaneous peri‐implantitis in the Beagle dog." Journal of Periodontal Research (1): 93-100.
dc.identifier.issn0022-3484
dc.identifier.issn1600-0765
dc.identifier.urihttps://hdl.handle.net/2027.42/166284
dc.description.abstractObjectiveTo evaluate microbial and host‐derived biomarker changes during experimental peri‐implantitis in the Beagle dog.BackgroundLimited data exist on the microbial and biomarker changes during progressive bone loss as result of experimental peri‐implantitis.MethodsIn total, 36 implants (ndogs = 6) were assessed over 3 episodes of ligature‐induced peri‐implantitis followed by a period of spontaneous progression. Implants with hybrid (H) and completely rough (R) surface designs were used. Clinical and radiographic parameters were recorded at 4 timepoints. Peri‐implant sulcus fluid was collected from the buccal and lingual aspects of the implants. The presence of 7 bacterial species and 2 host‐derived biomarkers was assessed during the study period.ResultsTotal bacterial counts were significantly correlated with marginal bone loss (MBL) (r = .21; P = .009). Further, Phorphyromonas gulae (Pg) and Tannerella forsythia (Tf) were commonly correlated with MBL, suppuration (SUP) and the sulcular bleeding index scores (mSBI) (P < .05). Other bacteria were further correlated with SUP, mSBI, and MBL. While the analyzed bacteria dropped, Prevotella intermedia (Pi) further increased during the spontaneous progressive phase (P < .05). Total bacterial load did not differ significantly between H and R implants. Host‐derived IL‐10 was undetected along the study period. IL‐1β positively correlated with probing pocket depth (r = .18; P = .03). During spontaneous progression, H implants displayed statistically significant lower levels of IL‐1β (P = .003).ConclusionExperimental peri‐implantitis is associated with an increase in bacterial counts. While Pg and Tf are associated with ligature‐induced disease progression, Pi augmented its load during the spontaneous progressive phase. IL‐1β is associated with pocket probing depth and influenced by implant surface characteristics during the spontaneous progression phase.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherendosseous implant
dc.subject.otherbiomarker
dc.subject.otherfusobacterium nucleatum
dc.subject.otherperi‐implantitis
dc.subject.otherdental implant
dc.titleMicrobial and host‐derived biomarker changes during ligature‐induced and spontaneous peri‐implantitis in the Beagle dog
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelDentistry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166284/1/jre12797_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166284/2/jre12797.pdf
dc.identifier.doi10.1111/jre.12797
dc.identifier.doihttps://dx.doi.org/10.7302/207
dc.identifier.sourceJournal of Periodontal Research
dc.identifier.citedreferenceKany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci. 2019; 20 ( 23 ): 6008.
dc.identifier.citedreferenceMaruyama N, Mori A, Shono S, Oda H, Sako T. Evaluation of changes in periodontal bacteria in healthy dogs over 6 months using quantitative real‐time PCR. Pol J Vet Sci. 2018; 21: 127 ‐ 132.
dc.identifier.citedreferenceEke PI, Braswell LD, Fritz ME. Microbiota associated with experimental peri‐implantitis and periodontitis in adult Macaca mulatta monkeys. J Periodontol. 1998; 69: 190 ‐ 194.
dc.identifier.citedreferenceTillmanns HW, Hermann JS, Tiffee JC, Burgess AV, Meffert RM. Evaluation of three different dental implants in ligature‐induced peri‐implantitis in the beagle dog. Part II. Histology and microbiology. Int J Oral Maxillofac Implants. 1998; 13: 59 ‐ 68.
dc.identifier.citedreferenceNociti FH Jr, Cesco De Toledo R, Machado MA, Stefani CM, Line SR, Goncalves RB. Clinical and microbiological evaluation of ligature‐induced peri‐implantitis and periodontitis in dogs. Clin Oral Implants Res. 2001; 12: 295 ‐ 300.
dc.identifier.citedreferenceZhu B, Meng H, Huang B, Chen Z, Lu R. Detection of T. forsythia and other important bacteria in crestal and subcrestal implants with ligature‐induced peri‐implant infection in dogs. J Periodontol. 2019; 90: 306 ‐ 313.
dc.identifier.citedreferenceLinares A, Pico A, Blanco C, Blanco J. Adjunctive systemic metronidazole to nonsurgical therapy of peri‐implantitis with intrabony defects: a retrospective case series study. Int J Oral Maxillofac Implants. 2019; 34: 1237 ‐ 1245.
dc.identifier.citedreferenceNart J, Pons R, Valles C, Esmatges A, Sanz‐Martin I, Monje A. Non‐surgical therapeutic outcomes of peri‐implantitis: 12‐month results. Clin Oral Investig. 2020; 24: 675 ‐ 682.
dc.identifier.citedreferenceHeitz‐Mayfield LJA, Salvi GE, Mombelli A, Faddy M, Lang NP. Anti‐infective surgical therapy of peri‐implantitis. A 12‐month prospective clinical study. Clin Oral Implants Res. 2012; 23: 205 ‐ 210.
dc.identifier.citedreferenceGaraicoa‐Pazmino C, Fretwurst T, Squarize CH, et al. Characterization of macrophage polarization in periodontal disease. J Clin Periodontol. 2019; 46: 830 ‐ 839.
dc.identifier.citedreferenceRenvert S, Widen C, Persson GR. Cytokine expression in peri‐implant crevicular fluid in relation to bacterial presence. J Clin Periodontol. 2015; 42: 697 ‐ 702.
dc.identifier.citedreferenceSchierano G, Pejrone G, Brusco P, et al. TNF‐alpha TGF‐beta2 and IL‐1beta levels in gingival and peri‐implant crevicular fluid before and after de novo plaque accumulation. J Clin Periodontol. 2008; 35: 532 ‐ 538.
dc.identifier.citedreferenceDabdoub SM, Tsigarida AA, Kumar PS. Patient‐specific analysis of periodontal and peri‐implant microbiomes. J Dent Res. 2013; 92: 168S ‐ 175S.
dc.identifier.citedreferenceSchwarz F, Herten M, Sager M, Bieling K, Sculean A, Becker J. Comparison of naturally occurring and ligature‐induced peri‐implantitis bone defects in humans and dogs. Clin Oral Implants Res. 2007; 18: 161 ‐ 170.
dc.identifier.citedreferenceCarcuac O, Abrahamsson I, Albouy JP, Linder E, Larsson L, Berglundh T. Experimental periodontitis and peri‐implantitis in dogs. Clin Oral Implants Res. 2013; 24: 363 ‐ 371.
dc.identifier.citedreferenceAlbouy JP, Abrahamsson I, Berglundh T. Spontaneous progression of experimental peri‐implantitis at implants with different surface characteristics: an experimental study in dogs. J Clin Periodontol. 2012; 39: 182 ‐ 187.
dc.identifier.citedreferenceIsidor F. Clinical probing and radiographic assessment in relation to the histologic bone level at oral implants in monkeys. Clin Oral Implants Res. 1997; 8: 255 ‐ 264.
dc.identifier.citedreferenceRitter L, Elger MC, Rothamel D, et al. Accuracy of peri‐implant bone evaluation using cone beam CT, digital intra‐oral radiographs and histology. Dentomaxillofac Radiol. 2014; 43: 20130088.
dc.identifier.citedreferenceBenic GI, Sancho‐Puchades M, Jung RE, Deyhle H, Hammerle CH. In vitro assessment of artifacts induced by titanium dental implants in cone beam computed tomography. Clin Oral Implants Res. 2013; 24: 378 ‐ 383.
dc.identifier.citedreferenceFickl S, Kebschull M, Calvo‐Guirado JL, Hurzeler M, Zuhr O. Experimental peri‐implantitis around different types of implants ‐ A clinical and radiographic study in dogs. Clin Implant Dent Relat Res. 2015; 17 ( Suppl 2 ): e661 ‐ e669.
dc.identifier.citedreferenceBerglundh T, Wennstrom JL, Lindhe J. Long‐term outcome of surgical treatment of peri‐implantitis. A 2–11‐year retrospective study. Clin Oral Implants Res. 2018; 29: 404 ‐ 410.
dc.identifier.citedreferenceAlmohandes A, Carcuac O, Abrahamsson I, Lund H, Berglundh T. Re‐osseointegration following reconstructive surgical therapy of experimental peri‐implantitis. A pre‐clinical in vivo study. Clin Oral Implants Res. 2019; 30: 447 ‐ 456.
dc.identifier.citedreferenceCarcuac O, Abrahamsson I, Derks J, Petzold M, Berglundh T. Spontaneous progression of experimental peri‐implantitis in augmented and pristine bone: a pre‐clinical in vivo study. Clin Oral Implants Res. 2020; 31: 192 ‐ 200.
dc.identifier.citedreferenceDreyer H, Grischke J, Tiede C, et al. Epidemiology and risk factors of peri‐implantitis: a systematic review. J Periodontal Res. 2018; 53: 657 ‐ 681.
dc.identifier.citedreferenceCharalampakis G, Abrahamsson I, Carcuac O, Dahlen G, Berglundh T. Microbiota in experimental periodontitis and peri‐implantitis in dogs. Clin Oral Implants Res. 2014; 25: 1094 ‐ 1098.
dc.identifier.citedreferenceFurst MM, Salvi GE, Lang NP, Persson GR. Bacterial colonization immediately after installation on oral titanium implants. Clin Oral Implants Res. 2007; 18: 501 ‐ 508.
dc.identifier.citedreferenceLafaurie GI, Sabogal MA, Castillo DM, et al. Microbiome and microbial biofilm profiles of peri‐implantitis: a systematic review. J Periodontol. 2017; 88: 1066 ‐ 1089.
dc.identifier.citedreferenceKumar PS, Mason MR, Brooker MR, O’Brien K. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 2012; 39: 425 ‐ 433.
dc.identifier.citedreferenceSanz‐Martin I, Doolittle‐Hall J, Teles RP, et al. Exploring the microbiome of healthy and diseased peri‐implant sites using Illumina sequencing. J Clin Periodontol. 2017; 44: 1274 ‐ 1284.
dc.identifier.citedreferenceCarcuac O, Berglundh T. Composition of human peri‐implantitis and periodontitis lesions. J Dent Res. 2014; 93: 1083 ‐ 1088.
dc.identifier.citedreferenceGalindo‐Moreno P, Lopez‐Martinez J, Caba‐Molina M, et al. Morphological and immunophenotypical differences between chronic periodontitis and peri‐implantitis ‐ a cross‐sectional study. Eur J Oral Implantol. 2017; 10: 453 ‐ 463.
dc.identifier.citedreferenceRakic M, Monje A, Radovanovic S, Petkovic‐Curcin A, Vojvodic D, Tatic Z. Is the personalized approach the key to improve clinical diagnosis of peri‐implant conditions? The role of bone markers. J Periodontol. 2020; 91 ( 7 ): 859 ‐ 869. https://doi.org/10.1002/JPER.19‐0283
dc.identifier.citedreferenceRamseier CA, Eick S, Bronnimann C, Buser D, Bragger U, Salvi GE. Host‐derived biomarkers at teeth and implants in partially edentulous patients. A 10‐year retrospective study. Clin Oral Implants Res. 2016; 27: 211 ‐ 217.
dc.identifier.citedreferenceAtaoglu H, Alptekin NO, Haliloglu S, et al. Interleukin‐1beta, tumor necrosis factor‐alpha levels and neutrophil elastase activity in peri‐implant crevicular fluid. Clin Oral Implants Res. 2002; 13: 470 ‐ 476.
dc.identifier.citedreferenceKilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, Group NCRRGW. Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Gene Med. 2010; 12: 561 ‐ 563.
dc.identifier.citedreferenceMonje A, Insua A, Rakic M, Nart J, Moyano‐Cuevas JL, Wang HL. Estimation of the diagnostic accuracy of clinical parameters for monitoring peri‐implantitis progression: an experimental canine study. J Periodontol. 2018; 89: 1442 ‐ 1451.
dc.identifier.citedreferenceGrischke J, Karch A, Wenzlaff A, Foitzik MM, Stiesch M, Eberhard J. Keratinized mucosa width is associated with severity of peri‐implant mucositis. A cross‐sectional study. Clin Oral Implants Res. 2019; 30: 457 ‐ 465.
dc.identifier.citedreferenceMombelli A, van Oosten MA, Schurch E Jr, Land NP. The microbiota associated with successful or failing osseointegrated titanium implants. Oral Microbiol Immunol. 1987; 2: 145 ‐ 151.
dc.identifier.citedreferenceMonje A, Insua A, Monje F, et al. Diagnostic accuracy of the implant stability quotient in monitoring progressive peri‐implant bone loss: An experimental study in dogs. Clin Oral Implants Res. 2018; 29: 1016 ‐ 1024.
dc.identifier.citedreferenceSanguansermsri P, Nobbs AH, Jenkinson HF, Surarit R. Interspecies dynamics among bacteria associated with canine periodontal disease. Mol Oral Microbiol. 2018; 33: 59 ‐ 67.
dc.working.doi10.7302/207en
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.