Show simple item record

Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN

dc.contributor.authorFang, Xiaohua
dc.contributor.authorForbes, Jeffrey M.
dc.contributor.authorGan, Quan
dc.contributor.authorLiu, Guiping
dc.contributor.authorThaller, Scott
dc.contributor.authorBougher, Stephen
dc.contributor.authorAndersson, Laila
dc.contributor.authorBenna, Mehdi
dc.contributor.authorEparvier, Francis
dc.contributor.authorMa, Yingjuan
dc.contributor.authorPawlowski, David
dc.contributor.authorEngland, Scott
dc.contributor.authorJakosky, Bruce
dc.date.accessioned2021-03-02T21:35:28Z
dc.date.available2022-03-02 16:35:25en
dc.date.available2021-03-02T21:35:28Z
dc.date.issued2021-02
dc.identifier.citationFang, Xiaohua; Forbes, Jeffrey M.; Gan, Quan; Liu, Guiping; Thaller, Scott; Bougher, Stephen; Andersson, Laila; Benna, Mehdi; Eparvier, Francis; Ma, Yingjuan; Pawlowski, David; England, Scott; Jakosky, Bruce (2021). "Tidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN." Journal of Geophysical Research: Space Physics 126(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/166325
dc.description.abstractLongitudinal structures in the Martian thermosphere and topside ionosphere between 150 and 200 km altitudes are studied using in situ electron and neutral measurements from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. Four time intervals are selected for comparison, during which MAVEN sampled similar local time (9.3–10.3 h) and latitude (near 20°S) regions but at different solar longitude positions (two near northern summer solstice, one each at northern vernal and autumnal equinoxes). Persistent and pronounced tidal oscillations characterize the ionosphere and thermosphere, whose longitudinal variations in density are generally in‐phase with each other. Our analysis of simultaneous and collocated neutral and electron data provides direct observational evidence for thermosphere‐ionosphere coupling through atmospheric tides. We conclude that the ionosphere is subject to modulation by upward‐propagating thermal tides, via both tide‐induced vertical displacement and photochemical reactions. Atmospheric tides constitute a ubiquitous and significant perturbation source to the ionospheric electron density, up to ∼15% near 200 km.Plain Language SummaryVertically propagating tides are a type of global‐scale periodic oscillation caused by solar heating in a rotating planetary atmosphere. Martian atmospheric tidal waves have been extensively observed and studied at low altitudes, but our knowledge concerning their behavior at high altitudes is sparse. In particular, little is known about tidal oscillations in the ionosphere, which is the part of the upper atmosphere that is ionized by absorption of solar EUV and X‐ray irradiance. Using in situ neutral and electron measurements from the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, we investigate thermal tidal signatures in both the Martian upper atmosphere and ionosphere. Our analysis of simultaneous and collocated ionospheric and atmospheric data provides direct observational evidence that the charged and neutral regimes are tightly coupled, not only through well‐understood photochemical reactions but also by tidal waves forced from below. This study elucidates the role of planetary‐scale tidal waves in coupling various elements of the near‐Mars space environment. Besides our directly examined neutral‐electron density coupling, this study also sheds light on the nature of vertical coupling between the lower and upper atmospheric regimes of Mars.Key PointsDirect observational evidence for Martian thermosphere‐ionosphere coupling by atmospheric tides is presentedThe ionosphere below 200 km altitude is controlled by photochemistry and modulated by tide‐induced vertical displacementAtmospheric tides constitute a ubiquitous, significant source of ionospheric electron density variability (up to ∼15% at 200 km altitude)
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotochemical equilibrium
dc.subject.otherthermosphere‐ionosphere coupling
dc.subject.othervertical displacement
dc.subject.otherionospheric tides
dc.subject.otherMars
dc.subject.otheratmospheric tides
dc.titleTidal Effects on the Longitudinal Structures of the Martian Thermosphere and Topside Ionosphere Observed by MAVEN
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166325/1/2020JA028562-sup-0002-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166325/2/jgra56215_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166325/3/jgra56215.pdf
dc.identifier.doi10.1029/2020JA028562
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLo, D. Y., Yelle, R. V., Schneider, N. M., Jain, S. K., Stewart, A. I. F., England, S. L., et al. ( 2015 ). Nonmigrating tides in the martian atmosphere as observed by MAVEN IUVS. Geophysical Research Letters, 42, 9057 – 9063. https://doi.org/10.1002/2015GL066268
dc.identifier.citedreferenceCahoy, K., Hinson, D., & Tyler, G. L. ( 2006 ). Radio science measurements of atmospheric refractivity with mars global surveyor. Journal of Geophysical Research, 111, E05003. https://doi.org/10.1029/2005JE002634
dc.identifier.citedreferenceEngland, S. L., Liu, G., Kumar, A., Mahaffy, P. R., Elrod, M., Benna, M., et al. ( 2019 ). Atmospheric tides at high latitudes in the martian upper atmosphere observed by MAVEN and MRO. Journal of Geophysical Research: Space Physics, 124, 2943 – 2953. https://doi.org/10.1029/2019JA026601
dc.identifier.citedreferenceEngland, S. L., Liu, G., Withers, P., Yiğit, E., Lo, D., Jain, S., et al. ( 2016 ). Simultaneous observations of atmospheric tides from combined in situ and remote observations at mars from the MAVEN spacecraft. Journal of Geophysical Research: Planets, 121, 594 – 607. https://doi.org/10.1002/2016JE004997
dc.identifier.citedreferenceEparvier, F., Chamberlin, P., Woods, T., & Thiemann, E. ( 2015 ). The solar extreme ultraviolet monitor for MAVEN. Space Science Reviews, 195 ( 1–4 ), 293 – 301. https://doi.org/10.1007/s11214-015-0195-2
dc.identifier.citedreferenceFang, X., Ma, Y., Brain, D., Dong, Y., & Lillis, R. ( 2015 ). Control of mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time‐dependent MHD study. Journal of Geophysical Research: Space Physics, 120, 10 – 926. https://doi.org/10.1002/2015JA021605
dc.identifier.citedreferenceFang, X., Ma, Y., Lee, Y., Bougher, S., Liu, G., Benna, M., et al. ( 2020 ). Mars dust storm effects in the ionosphere and magnetosphere and implications for atmospheric carbon loss. Journal of Geophysical Research: Space Physics, 125, e2019JA026838. https://doi.org/10.1029/2019JA026838
dc.identifier.citedreferenceFang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., et al. ( 2017 ). The mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 122, 4117 – 4137. https://doi.org/10.1002/2016JA023509
dc.identifier.citedreferenceForbes, J. M., Bridger, A. F., Bougher, S. W., Hagan, M. E., Hollingsworth, J. L., Keating, G. M., & Murphy, J. ( 2002 ). Nonmigrating tides in the thermosphere of mars. Journal of Geophysical Research, 107 ( E11 ), 5113. https://doi.org/10.1029/2001JE001582
dc.identifier.citedreferenceForbes, J. M., & Miyahara, S. ( 2006 ). Solar semidiurnal tide in the dusty atmosphere of mars. Journal of the Atmospheric Sciences, 63 ( 7 ), 1798 – 1817.
dc.identifier.citedreferenceForbes, J. M., & Zhang, X. ( 2018 ). Polar region variability in the lower thermosphere of mars from odyssey and reconnaissance orbiter aerobraking measurements. Journal of Geophysical Research: Space Physics, 123, 8664 – 8687. https://doi.org/10.1029/2018JA025527
dc.identifier.citedreferenceForbes, J. M., Zhang, X., Forget, F., Millour, E., & Kleinböhl, A. ( 2020 ). Solar tides in the middle and upper atmosphere of mars. Journal of Geophysical Research: Space Physics, 125, e2020JA028140. https://doi.org/10.1029/2020JA028140
dc.identifier.citedreferenceForget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., et al. ( 1999 ). Improved general circulation models of the martian atmosphere from the surface to above 80 km. Journal of Geophysical Research, 104 ( E10 ), 24155 – 24175.
dc.identifier.citedreferenceGonzález‐Galindo, F., López‐Valverde, M. A., Forget, F., García‐Comas, M., Millour, E., & Montabone, L. ( 2015 ). Variability of the Martian thermosphere during eight martian years as simulated by a ground‐to‐exosphere global circulation model. Journal of Geophysical Research: Planets, 120, 2020 – 2035. https://doi.org/10.1002/2015JE004925
dc.identifier.citedreferenceGuzewich, S. D., Talaat, E. R., & Waugh, D. W. ( 2012 ). Observations of planetary waves and nonmigrating tides by the mars climate sounder. Journal of Geophysical Research, 117, E03010. https://doi.org/10.1029/2011JE003924
dc.identifier.citedreferenceHagan, M., Maute, A., Roble, R., Richmond, A., Immel, T., & England, S. ( 2007 ). Connections between deep tropical clouds and the earth’s ionosphere. Geophysical Research Letters, 34, L20109. https://doi.org/10.1029/2007GL030142
dc.identifier.citedreferenceHanson, W., Sanatani, S., & Zuccaro, D. ( 1977 ). The martian ionosphere as observed by the viking retarding potential analyzers. Journal of Geophysical Research, 82 ( 28 ), 4351 – 4363.
dc.identifier.citedreferenceImmel, T., Sagawa, E., England, S., Henderson, S., Hagan, M., Mende, S., et al. ( 2006 ). Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33, L15108. https://doi.org/10.1029/2006GL026161
dc.identifier.citedreferenceLeovy, C. B., & Zurek, R. W. ( 1979 ). Thermal tides and martian dust storms: Direct evidence for coupling. Journal of Geophysical Research, 84 ( B6 ), 2956 – 2968.
dc.identifier.citedreferenceLiu, G., England, S., Lillis, R. J., Mahaffy, P. R., Elrod, M., Benna, M., & Jakosky, B. ( 2017 ). Longitudinal structures in mars’ upper atmosphere as observed by MAVEN/NGIMS. Journal of Geophysical Research: Space Physics, 122, 1258 – 1268. https://doi.org/10.1002/2016JA023455
dc.identifier.citedreferenceMa, Y., Fang, X., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., et al. ( 2014 ). Effects of crustal field rotation on the solar wind plasma interaction with mars. Geophysical Research Letters, 41, 6563 – 6569. https://doi.org/10.1002/2014GL060785
dc.identifier.citedreferenceMahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., et al. ( 2015 ). The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Science Reviews, 195 ( 1–4 ), 49 – 73. https://doi.org/10.1007/s11214-014-0091-1
dc.identifier.citedreferenceMontabone, L., Spiga, A., Kass, D. M., Kleinböhl, A., Forget, F., & Millour, E. ( 2020 ). Martian year 34 column dust climatology from mars climate sounder observations: Reconstructed maps and model simulations. Journal of Geophysical Research: Planets, 125, e2019JE006111. https://doi.org/10.1029/2019JE006111
dc.identifier.citedreferenceMorschhauser, A., Lesur, V., & Grott, M. ( 2014 ). A spherical harmonic model of the lithospheric magnetic field of mars. Journal of Geophysical Research: Planets, 119, 1162 – 1188. https://doi.org/10.1002/2013JE004555
dc.identifier.citedreferenceMoudden, Y., & Forbes, J. ( 2008 ). Topographic connections with density waves in mars’ aerobraking regime. Journal of Geophysical Research, 113, E11009. https://doi.org/10.1029/2008JE003107
dc.identifier.citedreferenceMoudden, Y., & Forbes, J. ( 2010 ). A new interpretation of mars aerobraking variability: Planetary wave‐tide interactions. Journal of Geophysical Research, 115, E09005. https://doi.org/10.1029/2009JE003542
dc.identifier.citedreferenceNěmec, F., Morgan, D., Gurnett, D., Duru, F., & Truhlík, V. ( 2011 ). Dayside ionosphere of mars: Empirical model based on data from the Marsis instrument. Journal of Geophysical Research, 116, E07003. https://doi.org/10.1029/2010JE003789
dc.identifier.citedreferenceSakai, S., Andersson, L., Cravens, T. E., Mitchell, D. L., Mazelle, C., Rahmati, A., et al. ( 2016 ). Electron energetics in the martian dayside ionosphere: Model comparisons with MAVEN data. Journal of Geophysical Research: Space Physics, 121, 7049 – 7066. https://doi.org/10.1002/2016JA022782
dc.identifier.citedreferenceSchunk, R., & Nagy, A. ( 2009 ). Ionospheres: Physics, plasma physics, and chemistry. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceThaller, S. A., Andersson, L., Pilinski, M. D., Thiemann, E., Withers, P., Elrod, M., et al. ( 2020 ). Tidal wave‐driven variability in the mars ionosphere‐thermosphere system. Atmosphere, 11 ( 5 ), 521. https://doi.org/10.3390/atmos11050521
dc.identifier.citedreferenceWang, L., Fritts, D., & Tolson, R. ( 2006 ). Nonmigrating tides inferred from the mars odyssey and mars global surveyor aerobraking data. Geophysical Research Letters, 33, L23201. https://doi.org/10.1029/2006GL027753
dc.identifier.citedreferenceWilson, R. J. ( 2002 ). Evidence for nonmigrating thermal tides in the mars upper atmosphere from the mars global surveyor accelerometer experiment. Geophysical Research Letters, 29 ( 7 ), 1120. https://doi.org/10.1029/2001GL013975
dc.identifier.citedreferenceWithers, P., Bougher, S., & Keating, G. ( 2003 ). The effects of topographically‐controlled thermal tides in the martian upper atmosphere as seen by the mgs accelerometer. Icarus, 164 ( 1 ), 14 – 32. https://doi.org/10.1016/S0019-1035(03)00135-0
dc.identifier.citedreferenceWu, Z., Li, T., & Dou, X. ( 2015 ). Seasonal variation of martian middle atmosphere tides observed by the mars climate sounder. Journal of Geophysical Research: Planets, 120, 2206 – 2223. https://doi.org/10.1002/2015JE004922
dc.identifier.citedreferenceZurek, R. W. ( 1976 ). Diurnal tide in the martian atmosphere. Journal of the Atmospheric Sciences, 33 ( 2 ), 321 – 337.
dc.identifier.citedreferenceAndersson, L., Ergun, R., Delory, G., Eriksson, A., Westfall, J., Reed, H., et al. ( 2015 ). The langmuir probe and waves (LPW) instrument for MAVEN. Space Science Reviews, 195 ( 1–4 ), 173 – 198. https://doi.org/10.1007/s11214-015-0194-3
dc.identifier.citedreferenceAndrews, D. J., Andersson, L., Delory, G., Ergun, R., Eriksson, A. I., Fowler, C., et al. ( 2015 ). Ionospheric plasma density variations observed at mars by MAVEN/LPW. Geophysical Research Letters, 42, 8862 – 8869. https://doi.org/10.1002/2015GL065241
dc.identifier.citedreferenceBenna, M., Mahaffy, P., Grebowsky, J., Fox, J. L., Yelle, R. V., & Jakosky, B. M. ( 2015 ). First measurements of composition and dynamics of the martian ionosphere by MAVEN’s neutral gas and ion mass spectrometer. Geophysical Research Letters, 42, 8958 – 8965. https://doi.org/10.1002/2015GL066146
dc.identifier.citedreferenceBougher, S., Brain, D., Fox, J., Francisco, G., Simon‐Wedlund, C., & Withers, P. G. ( 2017 ). Upper neutral atmosphere and ionosphere. In B. Haberle, M. Smith, T. Clancy, F. Forget, & R. Zurek (Eds.), The atmosphere and climate of mars (pp. 433 – 463 ). Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceBougher, S., Engel, S., Hinson, D. P., & Forbes, J. M. ( 2001 ). Mars global surveyor radio science electron density profiles: Neutral atmosphere implications. Geophysical Research Letters, 28 ( 16 ), 3091 – 3094.
dc.identifier.citedreferenceBougher, S., Engel, S., Hinson, D., & Murphy, J. ( 2004 ). MGS radio science electron density profiles: Interannual variability and implications for the martian neutral atmosphere. Journal of Geophysical Research, 109, E03010. https://doi.org/10.1029/2003JE002154
dc.identifier.citedreferenceBougher, S., Pawlowski, D., Bell, J., Nelli, S., McDunn, T., Murphy, J., et al. ( 2015 ). Mars global ionosphere‐thermosphere model: Solar cycle, seasonal, and diurnal variations of the mars upper atmosphere. Journal of Geophysical Research: Planets, 120, 311 – 342. https://doi.org/10.1002/2014JE004715
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.