Show simple item record

Estimating Maximum Extent of Auroral Equatorward Boundary Using Historical and Simulated Surface Magnetic Field Data

dc.contributor.authorBlake, Seán P.
dc.contributor.authorPulkkinen, Antti
dc.contributor.authorSchuck, Peter W.
dc.contributor.authorGlocer, Alex
dc.contributor.authorTóth, Gabor
dc.date.accessioned2021-03-02T21:35:33Z
dc.date.available2022-03-02 16:35:29en
dc.date.available2021-03-02T21:35:33Z
dc.date.issued2021-02
dc.identifier.citationBlake, Seán P. ; Pulkkinen, Antti; Schuck, Peter W.; Glocer, Alex; Tóth, Gabor (2021). "Estimating Maximum Extent of Auroral Equatorward Boundary Using Historical and Simulated Surface Magnetic Field Data." Journal of Geophysical Research: Space Physics 126(2): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/166326
dc.description.abstractThe equatorward extent of the auroral oval, the region which separates the open‐field polar cap regions with the closed field subauroral regions, is an important factor to take into account when assessing the risk posed by space weather to ground infrastructure. During storms, the auroral oval is known to move equatorward, accompanied by ionospheric current systems and significant magnetic field variations. Here we outline a simple algorithm which can be used to estimate the maximum extent of the auroral equatorward boundary (MEAEB) using magnetic field data from ground‐based observatories. We apply this algorithm to three decades of INTERMAGNET data, and show how the auroral oval in the Northern hemisphere moves South with larger (more negative Dst) storms. We simulate a number of storms with different magnitudes using the Space Weather Modeling Framework (SWMF), and apply the same auroral boundary detection algorithm. For SWMF simulated storms with Dst > −600nT, the estimates of the MEAEB are broadly in line with the same estimates for historical events. For the extreme scaled storms (with Dst < −1,000 nT), there is considerable scatter in the estimated location of the auroral equatorward boundary. Our largest storm simulation was calculated using Carrington‐like estimates for the solar wind conditions. This resulted in a minimum Dst = −1,142 nT, and a minimum estimated auroral boundary of 35.5° MLAT in places.Key PointsThe maximum extent of the auroral equatorward boundary was estimated for individual days for three decades of ground magnetic field dataGeomagnetic storms were simulated using the Space Weather Modeling Framework, and found to give boundaries similar to historical dataExtreme geomagnetic storms (Dst < −1,000 nT) were simulated, resulting in auroral equatorward boundaries below 40° magnetic latitude
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSWMF simulations
dc.subject.otherauroral oval
dc.subject.othergeomagnetic field data
dc.titleEstimating Maximum Extent of Auroral Equatorward Boundary Using Historical and Simulated Surface Magnetic Field Data
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166326/1/jgra56155_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166326/2/jgra56155.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166326/3/2020JA028284-sup-0001-Supporting_Information_SI-S01.pdf
dc.identifier.doi10.1029/2020JA028284
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSigernes, F., Dyrland, M., Brekke, P., Chernouss, S., Lorentzen, D. A., Oksavik, K., et al. ( 2011 ). Two methods to forecast auroral displays. Journal of Space Weather and Space Climate, 1, A03. https://doi.org/10.1051/swsc/2011003
dc.identifier.citedreferencePulkkinen, A., Rastatter, L., Kuznetsova, M., Singer, H., Balch, C., Weimer, D., et al. ( 2013 ). Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations. Space Weather, 11, 369 – 385. https://doi.org/10.1002/swe.20056
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., & DeZeeuw, D. L. ( 2004 ). Ionospheric control of the magnetosphere: conductance. Annales Geophysicae, 22, 567 – 584. https://doi.org/10.5194/angeo-22-567-2004
dc.identifier.citedreferenceRiley, P., & Love, J. J. ( 2017 ). Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties. Space Weather, 15, 53 – 64. https://doi.org/10.1002/2016SW001470
dc.identifier.citedreferenceRussell, C. T., Luhmann, J. G., & Strangeway, R. J. ( 2016 ). Space physics: An introduction, Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceShea, M. A., & Smart, D. F. ( 2006 ). Compendium of the eight articles on the “Carrington Event” attributed to or written by Elias Loomis in the American Journal of Science, 1859‐1861. Advances in Space Research, 38, 313 – 385. https://doi.org/10.2475/ajs.s2-32.96.318
dc.identifier.citedreferenceShepherd, S. G. ( 2014 ). Altitude‐adjusted corrected geomagnetic coordinates: Definition and functional approximations. Journal of Geophysical Research: Space Physics, 119, 7501 – 7521. https://doi.org/10.1002/2014JA020264
dc.identifier.citedreferenceSilverman, S. M. ( 2003 ). Sporadic auroras. Journal of Geophysical Research, 108 ( A4 ), 8011. https://doi.org/10.1029/2002JA009335
dc.identifier.citedreferenceSilverman, S. M. ( 2005 ). Comparison of the aurora of September 1/2, 1859 with other great auroras. Advances in Space Research, 38, 136 – 144. https://doi.org/10.1016/j.asr.2005.03.157
dc.identifier.citedreferenceSilverman, S. M., & Cliver, E. W. ( 2001 ). Low‐latitude auroras: The magnetic storm of 14‐15 May 1921. Journal of Atmospheric and Solar‐Terrestrial Physics, 63, 523 – 535. https://doi.org/10.1016/S1364-6826(00)00174-7
dc.identifier.citedreferenceStephenson, F., Willis, D., & Hallinan, T. ( 2004 ). The earliest datable observation of the aurora borealis. Astronomy and Geophysics, 45, 615 – 617. https://doi.org/10.1046/j.1468-4004.2003.45615.x
dc.identifier.citedreferenceStern, D. P. ( 2002 ). A millenium of magnetism. Reviews of Geophysics, 40 ( 3 ). https://doi.org/10.1029/2000RG000097
dc.identifier.citedreferenceThomson, A. W. P., Dawson, E. B., & Reay, S. J. ( 2011 ). Quantifying extreme behavior in geomagnetic activity. Space Weather, 9, S10001. https://doi.org/10.1029/2011SW000696
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the rice convection model. Space Science Reviews, 107, 175 – 196. https://doi.org/10.1023/A:1025532008047
dc.identifier.citedreferenceTóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R, Clauer, C. R., De Zeeuw, D. L., et al. ( 2005 ). Space weather modeling framework: A new tool for the space science community. Journal of Geophysical Research, 110, A12226. https://doi.org/10.1029/2005JA011126
dc.identifier.citedreferenceTóth, G., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTóth, G., Meng, X., Gombosi, T. I., & Rastätter, L. ( 2014 ). Predicting the time derivative of local magnetic perturbations. Journal of Geophysical Research, 119, 310. https://doi.org/10.1002/2013JA019456
dc.identifier.citedreferenceTsurutani, B. T., Gonzalez, W. D., Lakhina, G. S., & Alex, S. ( 2003 ). The extreme magnetic storm of 1‐2 September 1859. Journal of Geophysical Research, 108 ( A7 ). https://doi.org/10.1029/2002JA009504
dc.identifier.citedreferenceWanliss, J., & Showalter, K. M. ( 2006 ). High‐resolution global storm index: Dst versus SYM‐H. Journal of Geophysical Research, 111, A02202. https://doi.org/10.1029/2005JA011034
dc.identifier.citedreferenceWelling, D., Love, J. J., Rigler, E. J., Oliveira, D. M., Komar, C. M., & Morley, S. K. ( 2020 ). Numerical simulations of the geospace response to the arrival of a perfect interplanetary coronal mass ejection. Geophysical Research Letters. https://doi.org/10.1029/2020SW002489
dc.identifier.citedreferenceWoltring, H. J. ( 1986 ). A Fortran package for generalized, cross‐validatory spline smoothing and differentiation. Advances in Engineering Software, 8, 104 – 113. https://doi.org/10.1016/0141-1195(86)90098-7
dc.identifier.citedreferenceWoodroffe, J. R., Morley, S. K., Jordanova, V. K., Henderson, M. G., Cowee, M. M., & Gjerloev, J. G. ( 2016 ). The latitudinal variation of geoelectromagnetic disturbances during large (Dst ≤ −100 nT) geomagnetic storms. Space Weather, 14, 668 – 681. https://doi.org/10.1002/2016SW001376
dc.identifier.citedreferenceYokoyama, N., Kamide, Y., & Miyaoka, H. ( 1997 ). The size of the auroral belt during magnetic storms. Annales Geophysicae, 16, 566 – 573. https://doi.org/10.1007/s00585-998-0566-z
dc.identifier.citedreferenceZhang, Y., & Paxton, L. J. ( 2008 ). An empirical Kp‐dependent global auroral model based on TIMED/GUVI FUV data. Journal of Atmospheric and Solar‐Terrestrial Physics, 70, 1231 – 1242. https://doi.org/10.1016/j.jastp.2008.03.008
dc.identifier.citedreferenceAllen, J., Frank, L., Sauer, H., & Reiff, P. ( 1989 ). Effects of the March 1989 solar activity. EOS, 70 ( 46 ), 1479 – 1488. https://doi.org/10.1029/89EO00409
dc.identifier.citedreferenceBlake, S. P., Pulkkinen, A., Schuck, P. W., Nevanlinna, H., Reale, O., Veenadhari, B., & Mukherjee, S. ( 2020 ). Magnetic field measurements from Rome during the August‐September 1859 storms. Journal of Geophysical Research: Space Physics, 125, e2019JA027336. https://doi.org/10.1029/2019JA027336
dc.identifier.citedreferenceBolduc, L. ( 2002 ). GIC observations and studies in the Hydro‐Quebec power system. Journal of Atmospheric and Solar‐Terrestrial Physics, 64, 1793 – 1802. https://doi.org/10.1016/S1364-6826(02)00128-1
dc.identifier.citedreferenceBoteler, D. H., & Pirjola, R. J. ( 1998 ). The complex‐image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet. Geophysical Journal International, 132, 31 – 40. https://doi.org/10.1046/j.1365-246x.1998.00388.x
dc.identifier.citedreferenceBuonsanto, M. ( 1999 ). Ionospheric storms—A review. Space Science Reviews, 88, 563 – 601. https://doi.org/10.1023/A:1005107532631
dc.identifier.citedreferenceCarbary, J. F. ( 2005 ). A Kp‐based model of auroral boundaries. Space Weather, 3, S10001. https://doi.org/10.1029/2005SW000162
dc.identifier.citedreferenceCarbary, J. F., Sotirelis, T., Newell, P. T., & Meng, C. I. ( 2003 ). Auroral boundary correlations between UVI and DMSP. Journal of Geophysical Research, 108, S10001. https://doi.org/10.1029/2002JA009378
dc.identifier.citedreferenceCliver, E. W., & Dietrich, W. F. ( 2013 ). The 1859 space weather event revisited: limits of extreme activity. Journal of Space Weather and Space Climate, 3, A31. https://doi.org/10.1051/swsc/2013053
dc.identifier.citedreferenceDe Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., Powell, K. G., & Stout, Q. F. ( 2000 ). An adaptive MHD method for global space weather simulations. IEEE Transactions on Plasma Science, 28 ( 6 ), 1956 – 1965. https://doi.org/10.1109/27.902224
dc.identifier.citedreferenceDe Zeeuw, D. L., Sazykin, S., Wolf, R. A., Gombosi, T. I., Ridley, A. J., & Toth, G. ( 2004 ). Coupling of a global MHD code and an inner magnetospheric model: Initial results. Journal of Geophysical Research, 109, A12219. https://doi.org/10.1029/2003JA010366
dc.identifier.citedreferenceDinge, G. X., He, F., Zhang, X. X., & Chen, B. ( 2017 ). A new auroral boundary determination algorithm based on observations from TIMED/GUVI and DMSP/SSUSI. Journal of Geophysical Research, 122, 2162 – 2173. https://doi.org/10.1002/2016JA023295
dc.identifier.citedreferenceEroshenko, E. A., Belov, A. V., Boteler, D., Gaidash, S. P., Lobkov, S. L., Pirjola, R., & Trichtchenko, L. ( 2010 ). Effects of strong geomagnetic storms on Northern railways in Russia. Advances in Space Research, 46, 1102 – 1110. https://doi.org/10.1016/j.asr.2010.05.017
dc.identifier.citedreferenceFok, M. C., Buzulukova, N. Y., Chen, S. H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. ( 2014 ). The comprehensive inner magnetosphere‐ionosphere model. Journal of Geophysical Research: Space Physics, 119, 7522 – 7540. https://doi.org/10.1002/2014JA020239
dc.identifier.citedreferenceGonzalez, W. D., Clúa de Gonzalez, A. L., Dal Lago, A., Tsurutani, B. T., Arballo, J. K., Lakhina, G. K., et al. ( 1998 ). Magnetic cloud field intensities and solar wind velocities. Geophysical Research Letters, 25, 963 – 966. https://doi.org/10.1029/98GL00703
dc.identifier.citedreferenceHaiducek, J. D., Welling, D. T., Ganushkina, N. Y., Morley, S. K., & Ozturk, D. S. ( 2017 ). SWMF global magnetosphere simulations of January 2005: Geomagnetic indices and cross‐polar cap potential. Space Weather, 15, 1567 – 1587. https://doi.org/10.1002/2017SW001695
dc.identifier.citedreferenceHayakawa, H., Ebihara, Y., Hand, D. P., Hayakawa, S., Kumar, S., Mukherjee, S., & Veenadhari, B. ( 2018 ). Low‐latitude aurorae during the extreme space weather events in 1859. The Astrophysical Journal, 869, 57. https://doi.org/10.3847/1538-4357/aae47c
dc.identifier.citedreferenceHayakawa, H., Ebihara, Y., Willis, D. M., Toriumi, S., Iju, T., Hattori, K., et al. ( 2019 ). Temporal and spatial evolutions of a large sunspot group and great auroral storms around the Carrington event in 1859. Space Weather, 17 ( 11 ), 1553 – 1569. https://doi.org/10.1029/2019SW002269
dc.identifier.citedreferenceHayakawa, H., Iwahashi, K., Tamazawa, H., Isobe, H., Kataoka, R., Ebihara, Y., et al. ( 2016 ). East Asian observations of low‐latitude aurora during the Carrington magnetic storm. Publications of the Astronomical Society of Japan, 68, 99. https://doi.org/10.1093/pasj/psw097
dc.identifier.citedreferenceKilcommons, L. M., Redmon, R. J., & Knipp, D. J. ( 2017 ). A new DMSP magnetometer and auroral boundary data set and estimates of field‐aligned currents in dynamic auroral boundary coordinates. Journal of Geophysical Research: Space Physics, 122, 9068 – 9079. https://doi.org/10.1002/2016JA023342
dc.identifier.citedreferenceLi, X., Temerin, M., Tsurutani, B. T., & Alex, S. ( 2006 ). Modeling of 1‐2 September 1859 super magnetic storm. Advances in Space Research, 38, 273 – 279. https://doi.org/10.1016/j.asr.2005.06.070
dc.identifier.citedreferenceLove, J. L. ( 2020 ). Some experiments in extreme‐value statistical modeling of magnetic superstorm intensities. Space Weather, 18, 4126 – 4135. https://doi.org/10.1029/2019SW002255
dc.identifier.citedreferenceLove, J. L., Coisson, P., & Pulkkinen, A. ( 2016 ). Global statistical maps of extreme‐event magnetic observatory 1 min first differences in horizontal intensity. Geophysical Research Letters, 43, 4126 – 4135. https://doi.org/10.1002/2016GL068664
dc.identifier.citedreferenceLove, J. J., & Gannon, J. L. ( 2009 ). Revised Dst and the epicycles of magnetic disturbance: 1958‐2007. Annales Geophysicae, 27, 3101 – 3131. https://doi.org/10.5194/angeo-27-3101-2009
dc.identifier.citedreferenceLove, J. L., Hayakawa, H., & Cliver, E. W. ( 2019 ). Intensity and impact of the New York railroad superstorm of May 1921. Space Weather, 17, 1281 – 1292. https://doi.org/10.1029/2019SW002250
dc.identifier.citedreferenceManchester, W. B., IV, Ridley, A. J., Gombosi, T. I., & DeZeeuw, D. L. ( 2005 ). Modeling the Sun‐to‐Earth propagation of a very fast CME. Advances in Space Research, 38 ( 2 ), 253 – 262. https://doi.org/10.1016/j.asr.2005.09.044
dc.identifier.citedreferenceMilan, S. E., Hutchinson, J., Boakes, P. D., & Hubert, B. ( 2009 ). Influences on the radius of the auroral oval. Annales Geophysicae, 27, 2913 – 2924. https://doi.org/10.5194/angeo-27-2913-2009
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A., Kuznetsova, M. M., & Glocer, A. ( 2014 ). Modeling extreme “Carrington‐type” space weather events using three‐dimensional global MHD simulations. Journal of Geophysical Research: Space Physics, 119, 4456 – 4474. https://doi.org/10.1002/2013JA019661
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A., Mays, M. L., Kuznetsova, M. M., Galvin, A. B., Simunac, K., et al. ( 2013 ). Simulation of the 23 July 2012 extreme space weather event: What if this extremely rare CME was Earth directed. Space Weather, 11, 671 – 679. https://doi.org/10.1002/2013SW000990
dc.identifier.citedreferenceNgwira, C. M., Pulkkinen, A., Wilder, F. D., & Crowley, G. ( 2013 ). Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Space Weather, 11, 121 – 131. https://doi.org/10.1002/swe.20021
dc.identifier.citedreferencePirjola, R. ( 2001 ). Review on the calculation of surface electric and magnetic fields and of geomagnetically induced currents in ground‐based technological systems. Surveys in Geophysics, 23, 71 – 90. https://doi.org/10.1023/A:1014816009303
dc.identifier.citedreferencePirjola, R., Viljanen, A., Pulkkinen, A., & Amm, O. ( 1999 ). Space weather risk in power systems and pipelines. Physics and Chemistry of the Earth, 25, 333 – 337. https://doi.org/10.1016/S1464-1917(00)00027-1
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution‐adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154, 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferencePulkkinen, A., Bernabeu, E., Eichner, J., Beggan, C., & Thomson, A. W. P. ( 2012 ). Generation of 100‐year geomagnetically induced currents. Space Weather, 10, S04003. https://doi.org/10.1029/2011SW000750
dc.identifier.citedreferencePulkkinen, A., Bernabeu, E., Eichner, J., Viljanen, A., & Ngwira, C. ( 2015 ). Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth, Planets and Space, 67, 93. https://doi.org/10.1186/s40623-015-0255-6
dc.identifier.citedreferencePulkkinen, A., Bernabeu, E., Thomson, A., Viljanen, A., Pirjola, R., Boteler, D., et al. ( 2017 ). Geomagnetically induced currents: Science, engineering and applications readiness. Space Weather, 15 ( 7 ), 826 – 856. https://doi.org/10.1002/2016SW001501
dc.identifier.citedreferencePulkkinen, A., Pirjola, R., & Viljanen, A. ( 2008 ). Statistics of extreme geomagnetically induced current events. Space Weather, 6, S07001. https://doi.org/10.1029/2008SW000388
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.