Show simple item record

Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population

dc.contributor.authorDitmer, Mark A.
dc.contributor.authorIannarilli, Fabiola
dc.contributor.authorTri, Andrew N.
dc.contributor.authorGarshelis, David L.
dc.contributor.authorCarter, Neil H.
dc.date.accessioned2021-03-02T21:42:08Z
dc.date.available2022-03-02 16:42:06en
dc.date.available2021-03-02T21:42:08Z
dc.date.issued2021-02
dc.identifier.citationDitmer, Mark A.; Iannarilli, Fabiola; Tri, Andrew N.; Garshelis, David L.; Carter, Neil H. (2021). "Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population." Journal of Animal Ecology (2): 330-342.
dc.identifier.issn0021-8790
dc.identifier.issn1365-2656
dc.identifier.urihttps://hdl.handle.net/2027.42/166334
dc.description.abstractThe integration of citizen scientists into ecological research is transforming how, where, and when data are collected, and expanding the potential scales of ecological studies. Citizen‐science projects can provide numerous benefits for participants while educating and connecting professionals with lay audiences, potentially increasing the acceptance of conservation and management actions. However, for all the benefits, collection of citizen‐science data is often biased towards areas that are easily accessible (e.g. developments and roadways), and thus data are usually affected by issues typical of opportunistic surveys (e.g. uneven sampling effort). These areas are usually illuminated by artificial light at night (ALAN), a dynamic sensory stimulus that alters the perceptual world for both humans and wildlife.Our goal was to test whether satellite‐based measures of ALAN could improve our understanding of the detection process of citizen‐scientist‐reported sightings of a large mammal.We collected observations of American black bears Ursus americanus (n = 1,315) outside their primary range in Minnesota, USA, as part of a study to gauge population expansion. Participants from the public provided sighting locations of bears on a website. We used an occupancy modelling framework to determine how well ALAN accounted for observer metrics compared to other commonly used metrics (e.g. housing density).Citizen scientists reported 17% of bear sightings were under artificially lit conditions and monthly ALAN estimates did the best job accounting for spatial bias in detection of all observations, based on AIC values and effect sizes (β^ = 0.81, 0.71–0.90 95% CI). Bear detection increased with elevated illuminance; relative abundance was positively associated with natural cover, proximity to primary bear range and lower road density. Although the highest counts of bear sightings occurred in the highly illuminated suburbs of the Minneapolis‐St. Paul metropolitan region, we estimated substantially higher bear abundance in another region with plentiful natural cover and low ALAN (up to ~375% increased predicted relative abundance) where observations were sparse.We demonstrate the importance of considering ALAN radiance when analysing citizen‐scientist‐collected data, and we highlight the ways that ALAN data provide a dynamic snapshot of human activity.Remotely‐sensed artificial nightlight improves inference in ecological studies using wildlife sightings collected by citizen scientists through better accounting of sampling bias.
dc.publisherEnvironmental Systems Research Institute
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhuman–wildlife interactions
dc.subject.otherspatial bias
dc.subject.otherspecies monitoring
dc.subject.otherbears
dc.subject.otheroccupancy model
dc.subject.otherrange expansion
dc.titleArtificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166334/1/jane13338-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166334/2/jane13338.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166334/3/jane13338_am.pdf
dc.identifier.doi10.1111/1365-2656.13338
dc.identifier.sourceJournal of Animal Ecology
dc.identifier.citedreferenceNoyce, K. V., & Garshelis, D. L. ( 2010 ). Seasonal migrations of black bears ( Ursus americanus ): Causes and consequences. Behavioral Ecology and Sociobiology, 65 ( 4 ), 823 – 835. https://doi.org/10.1007/s00265‐010‐1086‐x
dc.identifier.citedreferenceMassimino, D., Harris, S. J., & Gillings, S. ( 2018 ). Evaluating spatiotemporal trends in terrestrial mammal abundance using data collected during bird surveys. Biological Conservation, 226, 153 – 167. https://doi.org/10.1016/j.biocon.2018.07.026
dc.identifier.citedreferenceMerkle, J. A., Robinson, H. S., Krausman, P. R., & Alaback, P. ( 2013 ). Food availability and foraging near human developments by black bears. Journal of Mammalogy, 94 ( 2 ), 378 – 385. https://doi.org/10.1644/12‐MAMM‐A‐002.1
dc.identifier.citedreferenceNational Park Service. ( 2010 ). NPScape housing measure – Phase 1 metrics processing SOP: Current housing density, historic housing density, and projected housing density metrics (No. Natural Resource Report. NPS/NRPC/IMD/NRR—2010/251. Published Report‐2165448.). Fort Collins, CO: National Park Service, Natural Resource Program Center.
dc.identifier.citedreferenceNational Park Service Inventory and Monitoring Division – Modeling, Analysis, and Synthesis Group. ( 2014 ). Road density: Explanatory variable for soundscape model training – CONUS. Retrieved from https://irma.nps.gov/DataStore/Reference/Profile/2217356
dc.identifier.citedreferenceNewman, G., Chandler, M., Clyde, M., McGreavy, B., Haklay, M., Ballard, H., … Gallo, J. ( 2017 ). Leveraging the power of place in citizen science for effective conservation decision making. Biological Conservation, 208, 55 – 64. https://doi.org/10.1016/j.biocon.2016.07.019
dc.identifier.citedreferencePaolino, R. M., Royle, J. A., Versiani, N. F., Rodrigues, T. F., Pasqualotto, N., Krepschi, V. G., & Chiarello, A. G. ( 2018 ). Importance of riparian forest corridors for the ocelot in agricultural landscapes. Journal of Mammalogy, 99 ( 4 ), 874 – 884. https://doi.org/10.1093/jmammal/gyy075
dc.identifier.citedreferenceR Core Team. ( 2019 ). R: A language and environment for statistical computing. Retrieved from https://www.R‐project.org/
dc.identifier.citedreferenceReddy, S., & Dávalos, L. M. ( 2003 ). Special paper: Geographical sampling bias and Its implications for conservation priorities in Africa. Journal of Biogeography, 30 ( 11 ), 1719 – 1727. https://doi.org/10.1046/j.1365‐2699.2003.00946.x
dc.identifier.citedreferenceRomán, M. O., Wang, Z., Sun, Q., Kalb, V., Miller, S. D., Molthan, A., … Masuoka, E. J. ( 2018 ). NASA’s Black Marble nighttime lights product suite. Remote Sensing of Environment, 210, 113 – 143. https://doi.org/10.1016/j.rse.2018.03.017
dc.identifier.citedreferenceRoyle, J. A. ( 2004 ). N‐Mixture models for estimating population size from spatially replicated counts. Biometrics, 60, 108 – 115. https://doi.org/10.1111/j.0006‐341X.2004.00142.x
dc.identifier.citedreferenceScheick, B. K., & McCown, W. ( 2014 ). Geographic distribution of American black bears in North America. Ursus, 25 ( 1 ), 24 – 33. https://doi.org/10.2192/URSUS‐D‐12‐00020.1
dc.identifier.citedreferenceSilvertown, J. ( 2009 ). A new dawn for citizen science. Trends in Ecology & Evolution, 24 ( 9 ), 467 – 471. https://doi.org/10.1016/j.tree.2009.03.017
dc.identifier.citedreferenceSimons, T. R., Alldredge, M. W., Pollock, K. H., & Wettroth, J. M. ( 2007 ). Experimental analysis of the auditory detection process on avian point counts. The Auk, 124 ( 3 ), 986 – 999. https://doi.org/10.1093/auk/124.3.986
dc.identifier.citedreferenceSullivan, B. L., Wood, C. L., Iliff, M. J., Bonney, R. E., Fink, D., & Kelling, S. ( 2009 ). eBird: A citizen‐based bird observation network in the biological sciences. Biological Conservation, 142 ( 10 ), 2282 – 2292. https://doi.org/10.1016/j.biocon.2009.05.006
dc.identifier.citedreferenceSun, C. C., Royle, J. A., & Fuller, A. K. ( 2019 ). Incorporating citizen science data in spatially explicit integrated population models. Ecology, 100 ( 9 ), e02777. https://doi.org/10.1002/ecy.2777
dc.identifier.citedreferenceSwanson, A., Kosmala, M., Lintott, C., & Packer, C. ( 2016 ). A generalized approach for producing, quantifying, and validating citizen science data from wildlife images. Conservation Biology, 30 ( 3 ), 520 – 531. https://doi.org/10.1111/cobi.12695
dc.identifier.citedreferenceTri, A. N., Edwards, J. W., Strager, M. P., Petty, J. T., Ryan, C. W., Carpenter, C. P., … Carr, P. C. ( 2016 ). Habitat use by American black bears in the urban–wildland interface of the Mid‐Atlantic, USA. Ursus, 27 ( 1 ), 45 – 56. https://doi.org/10.2192/URSUS‐D‐15‐00007.1
dc.identifier.citedreferenceTulloch, A. I. T., Possingham, H. P., Joseph, L. N., Szabo, J., & Martin, T. G. ( 2013 ). Realising the full potential of citizen science monitoring programs. Biological Conservation, 165, 128 – 138. https://doi.org/10.1016/j.biocon.2013.05.025
dc.identifier.citedreferenceU.S. Geological Survey. ( 2015 ). National hydrography dataset (USGS National Hydrography Dataset Best Resolution (NHD) for Minnesota. (published 20150413)). Retrieved from https://gisdata.mn.gov/dataset/water‐dnr‐hydrography
dc.identifier.citedreferencevan Strien, A. J., van Swaay, C. A. M., & Termaat, T. ( 2013 ). Opportunistic citizen science data of animal species produce reliable estimates of distribution trends if analysed with occupancy models. Journal of Applied Ecology, 50 ( 6 ), 1450 – 1458. https://doi.org/10.1111/1365‐2664.12158
dc.identifier.citedreferenceWarton, D. I., Renner, I. W., & Ramp, D. ( 2013 ). Model‐based control of observer bias for the analysis of presence‐only data in ecology. PLoS ONE, 8 ( 11 ), e79168. https://doi.org/10.1371/journal.pone.0079168
dc.identifier.citedreferenceWeckel, M. E., Mack, D., Nagy, C., Christie, R., & Wincorn, A. ( 2010 ). Using citizen science to map human‐coyote interaction in suburban New York, USA. The Journal of Wildlife Management, 74 ( 5 ), 1163 – 1171. https://doi.org/10.2193/2008‐512
dc.identifier.citedreferenceWilson, S., Anderson, E. M., Wilson, A. S. G., Bertram, D. F., & Arcese, P. ( 2013 ). Citizen science reveals an extensive shift in the winter distribution of migratory western grebes. PLoS ONE, 8 ( 6 ), e65408. https://doi.org/10.1371/journal.pone.0065408
dc.identifier.citedreferenceWilton, C. M., Belant, J. L., & Beringer, J. ( 2014 ). Distribution of American black bear occurrences and human–bear incidents in Missouri. Ursus, 25 ( 1 ), 53 – 60. https://doi.org/10.2192/URSUS‐D‐13‐00017.1
dc.identifier.citedreferenceXian, G. Z., Homer, C. G., Dewitz, J., Fry, J., Hossain, N., & Wickham, J. ( 2011 ). Change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogrammetric Engineering and Remote Sensing, 77 ( 8 ), 5.
dc.identifier.citedreferenceZeller, K. A., Wattles, D. W., Conlee, L., & DeStefano, S. ( 2019 ). Black bears alter movements in response to anthropogenic features with time of day and season. Movement Ecology, 7 ( 1 ), 19. https://doi.org/10.1186/s40462‐019‐0166‐4
dc.identifier.citedreferenceAltwegg, R., & Nichols, J. D. ( 2019 ). Occupancy models for citizen‐science data. Methods in Ecology and Evolution, 10 ( 1 ), 8 – 21. https://doi.org/10.1111/2041‐210X.13090
dc.identifier.citedreferenceBackstrand, K. ( 2003 ). Civic science for sustainability: Reframing the role of experts, policy‐makers and citizens in environmental governance. Global Environmental Politics, 3 ( 4 ), 24 – 41. https://doi.org/10.1162/152638003322757916
dc.identifier.citedreferenceBeckmann, J. P., & Berger, J. ( 2003 ). Rapid ecological and behavioural changes in carnivores: The responses of black bears ( Ursus americanus ) to altered food. Journal of Zoology, 261 ( 2 ), 207 – 212. https://doi.org/10.1017/S0952836903004126
dc.identifier.citedreferenceBivand, R. S., & Wong, D. W. S. ( 2018 ). Comparing implementations of global and local indicators of spatial association. TEST, 27 ( 3 ), 716 – 748. https://doi.org/10.1007/s11749‐018‐0599‐x
dc.identifier.citedreferenceBliss‐Ketchum, L. L., de Rivera, C. E., Turner, B. C., & Weisbaum, D. M. ( 2016 ). The effect of artificial light on wildlife use of a passage structure. Biological Conservation, 199, 25 – 28. https://doi.org/10.1016/j.biocon.2016.04.025
dc.identifier.citedreferenceBonney, R., Cooper, C. B., Dickinson, J., Kelling, S., Phillips, T., Rosenberg, K. V., & Shirk, J. ( 2009 ). Citizen science: A developing tool for expanding science knowledge and scientific literacy. BioScience, 59 ( 11 ), 977 – 984. https://doi.org/10.1525/bio.2009.59.11.9
dc.identifier.citedreferenceBrody, A. J., & Pelton, M. R. ( 1989 ). Effects of roads on black bear movements in western North Carolina. Wildlife Society Bulletin, 17 ( 1 ), 5 – 10.
dc.identifier.citedreferenceCarter, N. H., & Linnell, J. D. C. ( 2016 ). Co‐adaptation is key to coexisting with large carnivores. Trends in Ecology & Evolution, 31 ( 8 ), 575 – 578. https://doi.org/10.1016/j.tree.2016.05.006
dc.identifier.citedreferenceChapron, G., Kaczensky, P., Linnell, J. D. C., von Arx, M., Huber, D., Andrén, H., … Boitani, L. ( 2014 ). Recovery of large carnivores in Europe’s modern human‐dominated landscapes. Science, 346 ( 6216 ), 1517 – 1519. https://doi.org/10.1126/science.1257553
dc.identifier.citedreferenceChen, I.‐C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. ( 2011 ). Rapid range shifts of species associated with high levels of climate warming. Science, 333 ( 6045 ), 1024 – 1026. https://doi.org/10.1126/science.1206432
dc.identifier.citedreferenceClement, M. J., Hines, J. E., Nichols, J. D., Pardieck, K. L., & Ziolkowski, D. J. ( 2016 ). Estimating indices of range shifts in birds using dynamic models when detection is imperfect. Global Change Biology, 22 ( 10 ), 3273 – 3285. https://doi.org/10.1111/gcb.13283
dc.identifier.citedreferenceCrase, B., Liedloff, A. C., & Wintle, B. A. ( 2012 ). A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography, 35, 879 – 888. https://doi.org/10.1111/j.1600‐0587.2011.07138.x
dc.identifier.citedreferenceDénes, F. V., Silveira, L. F., & Beissinger, S. R. ( 2015 ). Estimating abundance of unmarked animal populations: Accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution, 6 ( 5 ), 543 – 556. https://doi.org/10.1111/2041‐210X.12333
dc.identifier.citedreferenceDickinson, J. L., Shirk, J., Bonter, D., Bonney, R., Crain, R. L., Martin, J., … Purcell, K. ( 2012 ). The current state of citizen science as a tool for ecological research and public engagement. Frontiers in Ecology and the Environment, 10 ( 6 ), 291 – 297. https://doi.org/10.1890/110236
dc.identifier.citedreferenceDickinson, J. L., Zuckerberg, B., & Bonter, D. N. ( 2010 ). Citizen science as an ecological research tool: Challenges and benefits. Annual Review of Ecology, Evolution, and Systematics, 41 ( 1 ), 149 – 172. https://doi.org/10.1146/annurev‐ecolsys‐102209‐144636
dc.identifier.citedreferenceDitmer, M. A., Garshelis, D. L., Noyce, K. V., Haveles, A. W., & Fieberg, J. R. ( 2016 ). Are American black bears in an agricultural landscape being sustained by crops? Journal of Mammalogy, 97 ( 1 ), 54 – 67. https://doi.org/10.1093/jmammal/gyv153
dc.identifier.citedreferenceDitmer, M. D., Iannarilli, F., Tri, A. N., Garshelis, D. L., & Carter, N. H. ( 2020 ). Data from: Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population. Dryad Digital Repository, https://doi.org/10.5061/dryad.59zw3r25c
dc.identifier.citedreferenceDitmer, M. A., Noyce, K. V., Fieberg, J. R., & Garshelis, D. L. ( 2018 ). Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecological Modelling, 387, 205 – 219. https://doi.org/10.1016/j.ecolmodel.2018.08.018
dc.identifier.citedreferenceDormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., … Lautenbach, S. ( 2013 ). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27 – 46. https://doi.org/10.1111/j.1600‐0587.2012.07348.x
dc.identifier.citedreferenceDvornich, K. M., Tudor, M., & Grue, C. E. ( 1995 ). ‘NatureMapping’: Assisting management of natural resources through public education and public participation. Wildlife Society Bulletin (1973–2006), 23 ( 4 ), 609 – 614.
dc.identifier.citedreferenceESRI. ( 2017 ). ArcGIS Desktop: Release 10.6. Redlands, CA: Environmental Systems Research Institute.
dc.identifier.citedreferenceEvans, M. J., Hawley, J. E., Rego, P. W., & Rittenhouse, T. A. G. ( 2014 ). Exurban land use facilitates human‐black bear conflicts. The Journal of Wildlife Management, 78 ( 8 ), 1477 – 1485. https://doi.org/10.1002/jwmg.796
dc.identifier.citedreferenceEvans, M. J., Rittenhouse, T. A. G., Hawley, J. E., & Rego, P. W. ( 2017 ). Black bear recolonization patterns in a human‐dominated landscape vary based on housing: New insights from spatially explicit density models. Landscape and Urban Planning, 162, 13 – 24. https://doi.org/10.1016/j.landurbplan.2017.01.009
dc.identifier.citedreferenceFiske, I., & Chandler, R. ( 2011 ). unmarked: An R package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software, 43 ( 1 ), 1 – 23. https://doi.org/10.18637/jss.v043.i10
dc.identifier.citedreferenceFollett, R., & Strezov, V. ( 2015 ). An analysis of citizen science based research: Usage and publication patterns. PLoS ONE, 10 ( 11 ), e0143687. https://doi.org/10.1371/journal.pone.0143687
dc.identifier.citedreferenceGarrett, J. K., Donald, P. F., & Gaston, K. J. ( 2019 ). Skyglow extends into the world’s key biodiversity areas. Animal Conservation, 23 ( 2 ), 153 – 159. https://doi.org/10.1111/acv.12480
dc.identifier.citedreferenceGarshelis, D. L., & Tri, A. N. ( 2019 ). Status of Minnesota black bears 2018: Harvests, complaints, foods, population trends, and hunter survey. Minnesota Department of Natural Resources. Retrieved from https://files.dnr.state.mn.us/recreation/hunting/bear/2018_bearharvest.pdf
dc.identifier.citedreferenceGaston, K. J. ( 2018 ). Lighting up the nighttime. Science, 362 ( 6416 ), 744 – 746. https://doi.org/10.1126/science.aau8226
dc.identifier.citedreferenceGaston, K. J., Bennie, J., Davies, T. W., & Hopkins, J. ( 2013 ). The ecological impacts of nighttime light pollution: A mechanistic appraisal. Biological Reviews, 88 ( 4 ), 912 – 927. https://doi.org/10.1111/brv.12036
dc.identifier.citedreferenceGaynor, K. M., Hojnowski, C. E., Carter, N. H., & Brashares, J. S. ( 2018 ). The influence of human disturbance on wildlife nocturnality. Science, 360 ( 6394 ), 1232 – 1235. https://doi.org/10.1126/science.aar7121
dc.identifier.citedreferenceHijmans, R. J. ( 2019 ). raster: Geographic data analysis and modeling. R package version 3.0‐7. Retrieved from https://CRAN.R‐project.org/package=raster
dc.identifier.citedreferenceHölker, F., Wolter, C., Perkin, E. K., & Tockner, K. ( 2010 ). Light pollution as a biodiversity threat. Trends in Ecology & Evolution, 25 ( 12 ), 681 – 682. https://doi.org/10.1016/j.tree.2010.09.007
dc.identifier.citedreferenceHomer, C., Dewitz, J., Yang, L., Jin, S., & Megown, K. ( 2015 ). Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Engineering & Remote Sensing, 81 ( 5 ), 345 – 354.
dc.identifier.citedreferenceHugo, S., & Altwegg, R. ( 2017 ). The second Southern African Bird Atlas Project: Causes and consequences of geographical sampling bias. Ecology and Evolution, 7 ( 17 ), 6839 – 6849. https://doi.org/10.1002/ece3.3228
dc.identifier.citedreferenceIsaac, N. J. B., van Strien, A. J., August, T. A., de Zeeuw, M. P., & Roy, D. B. ( 2014 ). Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology and Evolution, 5 ( 10 ), 1052 – 1060. https://doi.org/10.1111/2041‐210X.12254
dc.identifier.citedreferenceJetz, W., Wilcove, D. S., & Dobson, A. P. ( 2007 ). Projected impacts of climate and land‐use change on the global diversity of birds. PLOS Biology, 5 ( 6 ), e157. https://doi.org/10.1371/journal.pbio.0050157
dc.identifier.citedreferenceJung, K., & Kalko, E. K. V. ( 2010 ). Where forest meets urbanization: Foraging plasticity of aerial insectivorous bats in an anthropogenically altered environment. Journal of Mammalogy, 91 ( 1 ), 144 – 153. https://doi.org/10.1644/08‐MAMM‐A‐313R.1
dc.identifier.citedreferenceKelling, S., Fink, D., La Sorte, F. A., Johnston, A., Bruns, N. E., & Hochachka, W. M. ( 2015 ). Taking a ‘Big Data’ approach to data quality in a citizen science project. Ambio, 44 ( 4 ), 601 – 611. https://doi.org/10.1007/s13280‐015‐0710‐4
dc.identifier.citedreferenceKéry, M., & Royle, J. A. ( 2016 ). Chapter 6 – Modeling abundance with counts of unmarked individuals in closed populations: Binomial N‐mixture models. In M. Kéry & J. A. Royle (Eds.), Applied hierarchical modeling in ecology (pp. 219 – 312 ). https://doi.org/10.1016/B978‐0‐12‐801378‐6.00006‐0
dc.identifier.citedreferenceKéry, M., Royle, J. A., & Schmid, H. ( 2005 ). Modeling avian abundance from replicated counts using binomial mixture models. Ecological Applications, 15, 1450 – 1461. https://doi‐org.proxy.lib.umich.edu/10.1890/04‐1120
dc.identifier.citedreferenceKéry, M., Royle, J. A., Schmid, H., Schaub, M., Volet, B., Häfliger, G., & Zbinden, N. ( 2010 ). Site‐occupancy distribution modeling to correct population‐trend estimates derived from opportunistic observations. Conservation Biology, 24 ( 5 ), 1388 – 1397. https://doi.org/10.1111/j.1523‐1739.2010.01479.x
dc.identifier.citedreferenceKéry, M., & Schmid, H. ( 2004 ). Monitoring programs need to take into account imperfect species detectability. Basic and Applied Ecology, 5 ( 1 ), 65 – 73. https://doi.org/10.1078/1439‐1791‐00194
dc.identifier.citedreferenceKnape, J., Arlt, D., Barraquand, F., Berg, Å., Chevalier, M., Pärt, T., … Żmihorski, M. ( 2018 ). Sensitivity of binomial N‐mixture models to overdispersion: The importance of assessing model fit. Methods in Ecology and Evolution, 9 ( 10 ), 2102 – 2114. https://doi.org/10.1111/2041‐210X.13062
dc.identifier.citedreferenceKyba, C. C. M., Kuester, T., Sánchez de Miguel, A., Baugh, K., Jechow, A., Hölker, F., … Guanter, L. ( 2017 ). Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances, 3 ( 11 ), e1701528. https://doi.org/10.1126/sciadv.1701528
dc.identifier.citedreferenceMacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L., & Hines, J. E. ( 2017 ). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. London, UK: Academic Press.
dc.identifier.citedreferenceMair, L., & Ruete, A. ( 2016 ). Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE, 11 ( 1 ), e0147796. https://doi.org/10.1371/journal.pone.0147796
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.