Show simple item record

Physical aging of polystyrene blocks under three‐dimensional soft confinement in PS‐b‐poly(n‐butyl methacrylate) diblock copolymer: Two equilibrations on the way

dc.contributor.authorMa, Mingchao
dc.contributor.authorGuo, Yunlong
dc.date.accessioned2021-03-02T21:42:23Z
dc.date.available2022-03-02 16:42:21en
dc.date.available2021-03-02T21:42:23Z
dc.date.issued2021-02-15
dc.identifier.citationMa, Mingchao; Guo, Yunlong (2021). "Physical aging of polystyrene blocks under three‐dimensional soft confinement in PS‐b‐poly(n‐butyl methacrylate) diblock copolymer: Two equilibrations on the way." Journal of Polymer Science 59(4): 300-311.
dc.identifier.issn2642-4150
dc.identifier.issn2642-4169
dc.identifier.urihttps://hdl.handle.net/2027.42/166339
dc.description.abstractPolystyrene‐block‐poly(n‐butyl methacrylate) (PS‐b‐PnBMA) was used to investigate three‐dimensional (3D) soft confinement effect on physical aging of the PS block therein. The soft confinement is constructed by phase‐separated PnBMA domains, as PnBMA is liquid on the aging temperatures of PS blocks due to its low glass transition temperature. In enthalpy recovery, aging response of PS blocks is represented by a low and broad heat capacity peak associated with an enhanced aging rate with respect to homo‐PS, when the aging temperature is relatively low. However, the aging response exhibits opposite characteristics at relatively high temperatures, compared with the results of homo‐PS. The phase‐separated morphology and thus the soft confinement on PS blocks was confirmed by atomic force microscope imaging using the Peak Force quantitative nanomechanical mapping (QNM) technique. Two local maximums of recovered enthalpy versus aging temperature indicate that two equilibration processes exist during aging of confined PS blocks, within a substantially shorter timescale to the bulk. The 3D soft confinement effect on aging of PS blocks is attributed to dual equilibration mechanisms: one dominates at higher aging temperatures, leading to a restrained aging rate, while the other plays a key role at lower aging temperatures, resulting in accelerated physical aging.In this work, polystyrene‐block‐poly(n‐butyl methacrylate) (PS‐b‐PnBMA) is used to investigate the three‐dimensional (3D) soft confinement effect on the physical aging of the PS block. Two local maximums of recovered enthalpy versus aging temperature indicate that two equilibration processes exist during the aging of confined PS blocks within a substantially shorter timescale to the bulk.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.othernanoconfinement
dc.subject.othertwo equilibrations
dc.subject.otherphysical aging
dc.subject.otherdiblock copolymer
dc.titlePhysical aging of polystyrene blocks under three‐dimensional soft confinement in PS‐b‐poly(n‐butyl methacrylate) diblock copolymer: Two equilibrations on the way
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166339/1/pola29921.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166339/2/pola29921_am.pdf
dc.identifier.doi10.1002/pol.20200633
dc.identifier.sourceJournal of Polymer Science
dc.identifier.citedreferenceH.‐y. Choi, D.‐y. Lee, J.‐y. Lee, J.‐h. Kim, J. Appl. Polym. Sci. 2000, 78, 639.
dc.identifier.citedreferenceZ. Gan, B. Jiang, J. Zhang, J. Appl. Polym. Sci. 1996, 59, 961.
dc.identifier.citedreferenceM. Ma, T. Xue, S. Chen, Y. Guo, Y. Chen, H. Liu, Polym. Test. 2017, 60, 1.
dc.identifier.citedreferenceI. M. Hodge, G. S. Huvard, Macromolecules 1983, 16, 371.
dc.identifier.citedreferenceR. Greiner, F. R. Schwarzl, Rheol. Acta 1984, 23, 378.
dc.identifier.citedreferenceD. K. Owens, R. C. Wendt, J. Appl. Polym. Sci. 1969, 13, 1741.
dc.identifier.citedreferenceC. Chen, J. Wang, S. E. Woodcock, Z. Chen, Langmuir 2002, 18, 1302.
dc.identifier.citedreferenceT. P. Russell, T. E. Karis, Y. Gallot, A. M. Mayes, Nature 1994, 368, 729.
dc.identifier.citedreferenceG. M. Spinks, H. R. Brown, Z. Liu, Polym. Test. 2006, 25, 868.
dc.identifier.citedreferenceX. Cheng, K. W. Putz, C. D. Wood, L. C. Brinson, Macromol. Rapid Commun. 2015, 36, 391.
dc.identifier.citedreferenceL. Li, N. Alsharif, K. A. Brown, J. Phys. Chem. B 2018, 122, 10767.
dc.identifier.citedreferenceS. Askar, J. M. Torkelson, Polymer 2016, 99, 417.
dc.identifier.citedreferenceY. Lin, J. Jin, M. Song, J. Mater. Chem. 2011, 21, 3455.
dc.identifier.citedreferenceJ. Zhu, H. Peng, F. Rodriguez‐Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano, E. V. Barrera, Adv. Funct. Mater. 2004, 14, 643.
dc.identifier.citedreferenceM. Moniruzzaman, F. Du, N. Romero, K. I. Winey, Polymer 2006, 47, 293.
dc.identifier.citedreferenceJ. M. Torres, C. M. Stafford, B. D. Vogt, ACS Nano 2009, 3, 2677.
dc.identifier.citedreferenceC. M. Stafford, B. D. Vogt, C. Harrison, D. Julthongpiput, R. Huang, Macromolecules 2006, 39, 5095.
dc.identifier.citedreferenceY. Liu, Y.‐C. Chen, S. Hutchens, J. Lawrence, T. Emrick, A. J. Crosby, Macromolecules 2015, 48, 6534.
dc.identifier.citedreferenceZ. Yang, Y. Fujii, F. K. Lee, C.‐H. Lam, O. K. C. Tsui, Science 2010, 328, 1676.
dc.identifier.citedreferenceX. Monnier, D. Cangialosi, B. Ruta, R. Busch, I. Gallino, Sci. Adv. 2020, 6, 1454.
dc.identifier.citedreferenceR. R. Baglay, C. B. Roth, J. Chem. Phys. 2015, 143, 111101.
dc.identifier.citedreferenceS. Kahle, J. Korus, E. Hempel, R. Unger, S. Höring, K. Schröter, E. Donth, Macromolecules 1997, 30, 7214.
dc.identifier.citedreferenceR. R. Baglay, C. B. Roth, J. Chem. Phys. 2017, 146, 203307.
dc.identifier.citedreferenceA. B. Brennan, F. Feller, J. Rheol. 1995, 39, 453.
dc.identifier.citedreferenceG. M. Odegard, A. Bandyopadhyay, J. Polym. Sci. Pol. Phys. 2011, 49, 1695.
dc.identifier.citedreferenceV. A. Soloukhin, J. M. Brokken‐Zijp, O. L. J. v. Asselen, G. d. With, Macromolecules 2003, 36, 7585.
dc.identifier.citedreferenceP. Pan, B. Zhu, Y. Inoue, Macromolecules 2007, 40, 9664.
dc.identifier.citedreferenceJ. M. G. Cowie, R. Ferguson, Macromolecules 1989, 22, 2307.
dc.identifier.citedreferenceJ. M. Hutchinson, S. Smith, B. Horne, G. M. Gourlay, Macromolecules 1999, 32, 5046.
dc.identifier.citedreferenceY. Huang, D. R. Paul, Ind. Eng. Chem. Res. 2007, 46, 2342.
dc.identifier.citedreferenceT. M. Murphy, D. S. Langhe, M. Ponting, E. Baer, B. D. Freeman, D. R. Paul, Polymer 2011, 52, 6117.
dc.identifier.citedreferenceB. W. Rowe, B. D. Freeman, D. R. Paul, Polymer 2009, 50, 5565.
dc.identifier.citedreferenceV. M. Boucher, D. Cangialosi, A. Alegría, J. Colmenero, J. González‐Irun, L. M. Liz‐Marzan, Soft Matter 2010, 6, 3306.
dc.identifier.citedreferenceR. D. Priestley, P. Rittigstein, L. J. Broadbelt, K. Fukao, J. M. Torkelson, J. Phys.: Condens. Matter 2007, 19, 205120.
dc.identifier.citedreferenceA. Alegría, L. Goitiandía, I. Tellerıía, J. Colmenero, Macromolecules 1997, 30, 3881.
dc.identifier.citedreferenceJ. M. Hutchinson, Prog. Polym. Sci. 1995, 20, 703.
dc.identifier.citedreferenceI. M. Hodge, Science 1995, 267, 1945.
dc.identifier.citedreferenceL. C. E. Struik, Polym. Eng. Sci. 1977, 17, 165.
dc.identifier.citedreferenceD. Cangialosi, A. Alegría, J. Colmenero, Prog. Polym. Sci. 2016, 54–55, 128.
dc.identifier.citedreferenceY. Huang, D. R. Paul, J. Membrane. Sci. 2004, 244, 167.
dc.identifier.citedreferenceM. Micoulaut, Rep. Prog. Phys. 2016, 79, 66504.
dc.identifier.citedreferenceV. M. Boucher, D. Cangialosi, A. Alegría, J. Colmenero, Macromolecules 2011, 44, 8333.
dc.identifier.citedreferenceN. R. Cameron, J. M. G. Cowie, R. Ferguson, I. M, Polymer 2000, 41, 7255.
dc.identifier.citedreferenceJ. M. G. Cowie, S. Harris, I. J. McEwen, J. Polym. Sci. Pol. Phys. 1997, 35, 1107.
dc.identifier.citedreferenceJ. E. Pye, C. B. Roth, Phys. Rev. Lett. 2011, 107, 235701.
dc.identifier.citedreferenceD. Cangialosi, V. M. Boucher, A. Alegría, J. Colmenero, Phys. Rev. Lett. 2013, 111, 95701.
dc.identifier.citedreferenceI. Gallino, D. Cangialosi, Z. Evenson, L. Schmitt, S. Hechler, M. Stolpe, B. Ruta, Acta Mater. 2018, 144, 400.
dc.identifier.citedreferenceP. Luo, P. Wen, H. Y. Bai, B. Ruta, W. H. Wang, Phys. Rev. Lett. 2017, 118, 225901.
dc.identifier.citedreferenceR. Golovchak, A. Kozdras, V. Balitska, O. Shpotyuk, J. Phys.: Condens. Matter 2012, 24, 505106.
dc.identifier.citedreferenceY. P. Koh, S. L. Simon, Macromolecules 2013, 46, 5815.
dc.identifier.citedreferenceV. M. Boucher, D. Cangialosi, A. Alegría, J. Chem. Phys. 2017, 146, 203312.
dc.identifier.citedreferenceV. M. Boucher, D. Cangialosi, A. Alegría, J. Colmenero, Phys. Chem. Chem. Phys. 2017, 19, 961.
dc.identifier.citedreferenceN. G. Perez‐De‐Eulate, D. Cangialosi, Macromolecules 2018, 51, 3299.
dc.identifier.citedreferenceX. Monnier, D. Cangialosi, Phys. Rev. Lett. 2018, 121, 137801.
dc.identifier.citedreferenceH. Dai, Q. Chen, H. Qin, Y. Guan, D. Shen, Y. Hua, Y. Tang, J. Xu, Macromolecules 2006, 39, 6584.
dc.identifier.citedreferenceS. Cerritelli, D. Velluto, J. A. Hubbell, Biomacromolecules 2007, 8, 1966.
dc.identifier.citedreferenceA. Ranquin, W. Versées, W. Meier, J. Steyaert, P. V. Gelder, Nano Lett. 2005, 5, 2220.
dc.identifier.citedreferenceC. Grieco, M. P. Aplan, A. Rimshaw, Y. Lee, T. P. Le, W. Zhang, Q. Wang, S. T. Milner, E. D. Gomez, J. B. Asbury, J. Phys. Chem. C 2016, 120, 6978.
dc.identifier.citedreferenceC. Guo, Y.‐H. Lin, M. D. Witman, K. A. Smith, C. Wang, A. Hexemer, J. Strzalka, E. D. Gomez, R. Verduzco, Nano Lett. 2013, 13, 2957.
dc.identifier.citedreferenceR. C. Mulherin, S. Jung, S. Huettner, K. Johnson, P. Kohn, M. Sommer, S. Allard, U. Scherf, N. C. Greenham, Nano Lett. 2011, 11, 4846.
dc.identifier.citedreferenceJ. Bang, U. Jeong, D. Y. Ryu, T. P. Russell, C. J. Hawker, Adv. Mater. 2009, 21, 4769.
dc.identifier.citedreferenceR. Glass, MartinMöller, J. P. Spatz, Nanotechnology 2003, 14, 1153.
dc.identifier.citedreferenceM. P. Stoykovich, H. Kang, K. C. Daoulas, G. Liu, C.‐C. Liu, J. J. d. Pablo, M. Müller, P. F. Nealey, ACS Nano 2007, 1, 168.
dc.identifier.citedreferenceM. Ma, Y. Guo, J. Phys. Chem. B 2019, 123, 2448.
dc.identifier.citedreferenceM. Ma, Y. Huang, Y. Guo, Macromolecules 2018, 51, 7368.
dc.identifier.citedreferenceS. p. Boissé, M. A. Kryuchkov, N.‐D. Tien, C. G. r. Bazuin, R. E. Prud’homme, Macromolecules 2016, 49, 6973.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.