Show simple item record

Four‐dimensional relativistic scattering of electromagnetic waves from an arbitrary collection of moving lossy dielectric spheres

dc.contributor.authorRadpour, Hamed
dc.contributor.authorPourziad, Ali
dc.contributor.authorSarabandi, Kamal
dc.date.accessioned2021-03-02T21:42:42Z
dc.date.available2022-03-02 16:42:40en
dc.date.available2021-03-02T21:42:42Z
dc.date.issued2021-02
dc.identifier.citationRadpour, Hamed; Pourziad, Ali; Sarabandi, Kamal (2021). "Four‐dimensional relativistic scattering of electromagnetic waves from an arbitrary collection of moving lossy dielectric spheres." IET Microwaves, Antennas & Propagation 15(2): 180-191.
dc.identifier.issn1751-8725
dc.identifier.issn1751-8733
dc.identifier.urihttps://hdl.handle.net/2027.42/166345
dc.description.abstractFour‐dimensional (4D) relativistic scattering of electromagnetic waves from an arbitrary collection of uniformly translational moving lossy dielectric spheres is discussed. Two reference frames, four 4D coordinate systems and Lorentz transformation are used to obtain the scattered electromagnetic fields. The direct scattering of the spheres and their interactions are considered with a novel approach. The introduced method is straightforward and the analytical relations for the fields are achieved. To check the validity of the proposed method, different examples for both stationary and moving scatterers are investigated. The effects of key parameters such as the size, material, velocity, number, position of the spheres and also the frequency of the incident wave are discussed. The derived scattered fields are valid for low, medium and high velocities but according to practical applications low and moderate velocities are highlighted in numerical results.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othercomputational electromagnetics
dc.subject.otherelectromagnetic wave propagation
dc.subject.otherelectromagnetic wave scattering
dc.subject.othertime domain
dc.titleFour‐dimensional relativistic scattering of electromagnetic waves from an arbitrary collection of moving lossy dielectric spheres
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166345/1/mia212022.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166345/2/mia212022_am.pdf
dc.identifier.doi10.1049/mia2.12022
dc.identifier.sourceIET Microwaves, Antennas & Propagation
dc.identifier.citedreferenceZheng, K.S., et al.: Electromagnetic properties from moving dielectric in high speed with Lorentz‐FDTD. IEEE Antennas Wirel. Propag. Lett. 15, 934 – 937 ( 2016 )
dc.identifier.citedreferenceRosa, G.S., Nicolini, J.L., Hasselman, F.J.V.: Relativistic aspects of plane wave scattering by a perfectly conducting half‐plane with uniform velocity along an arbitrary direction. IEEE Trans. Antennas Propag. 65 ( 9 ), 4759 – 4767 ( 2017 )
dc.identifier.citedreferenceGarner, T.J., et al.: Lorentz invariance of absorption and extinction cross sections of a uniformly moving object. Phys. Rev. 96 ( 5 ), 053839 ( 2017 )
dc.identifier.citedreferenceGarner, T.J., et al.: Scattering characteristics of relativistically moving concentrically layered spheres. Phys. Lett. 382 ( 5 ), 362 – 366 ( 2018 )
dc.identifier.citedreferenceGarner, T.J., et al.: Time‐domain electromagnetic scattering by a sphere in uniform translational motion. JOSA A. 34 ( 2 ), 270 – 279 ( 2017 )
dc.identifier.citedreferenceHarfoush, F., Taflove, A., Kriegsman, G.A.: A numerical technique for analyzing electromagnetic wave scattering from moving surfaces in one and two dimensions. IEEE Trans. Antennas Propag. 37, 55 – 63 ( 1989 )
dc.identifier.citedreferenceHo, M.: Numerical simulation of scatting of electromagnetic waves from traveling and/or vibrating perfect conducting planes. IEEE Trans. Antennas Propag. 54 ( 1 ), 152 – 156 ( 2006 )
dc.identifier.citedreferenceKuang, L., et al.: Relativistic FDTD analysis of far‐field scattering of a high‐speed moving object. IEEE Antennas Wirel. Propag. Lett. 14, 879 – 882 ( 2015 )
dc.identifier.citedreferenceShao, J.H., Ma, X.K., Kang, Z.: Numerical analysis of electromagnetic scattering from a moving target by the Lorentz precise integration time‐domain method. IEEE Trans. Antennas Propag. 65 ( 10 ), 5649 – 5653 ( 2017 )
dc.identifier.citedreferenceZheng, K.S., et al.: Analysis of scattering fields from moving multi‐layered dielectric slab illuminated by an impulse source. IEEE Antennas Wirel. Propag. Lett. 16, 2130 – 2133 ( 2017 )
dc.identifier.citedreferenceShao, J., Ma, X., Wang, J.: A numerical method without coordinate transformations to the electromagnetic problem involving objects in arbitrary translational motion. IEEE Trans. Antennas Propag. 66 ( 8 ), 4158 – 4169 ( 2018 )
dc.identifier.citedreferencevan de Hulst, H.C.: Light Scattering by Small Particles. Dover, New York ( 1981 )
dc.identifier.citedreferenceBohren, C.F., Huffman, D.R.: Absorption and Scattering of Light by Small Particles ( 1983 )
dc.identifier.citedreferenceKong, J., Tsang, L., Ding, K.: Scattering of Electromagnetic Waves: Theories and Applications, vol. 1. Wiley, New York ( 2000 )
dc.identifier.citedreferenceKerker, M.: The Scattering of Light. Academic, New York ( 1969 )
dc.identifier.citedreferenceDe Zutter, D.: Scattering by a rotating dielectric sphere. IEEE Trans. Antennas Propag. AP‐28, 643 – 651 ( 1980 )
dc.identifier.citedreferenceTanaka, K.: Scattering of electromagnetic waves by a rotating perfectly conducting cylinder with arbitrary cross section: Point‐matching method. IEEE Trans. Antennas Propag. 28 ( 6 ), 796 – 803 ( 1980 )
dc.identifier.citedreferenceZutter, D.D.: Scattering by a rotating circular cylinder with finite conductivity. IEEE Trans. Antennas Propag. 31 ( 1 ), 166 – 169 ( 1983 )
dc.identifier.citedreferenceDe Zutter, D., Goethals, D.: Scattering by a rotating conducting sphere. IEEE Trans. Antennas Propagat. 32, 95 – 98 ( 1984 )
dc.identifier.citedreferenceKleinman, R.E., Mack, R.B.: Scattering by linearly vibrating objects. IEEE Trans. Antennas Propag. 27 ( 3 ), 344 – 352 ( 1979 )
dc.identifier.citedreferenceVan Bladel, J., De Zutter, D.: Reflections from linearly vibrating objects: Plane mirror at normal incidence. IEEE Trans. Antennas Propag. AP‐ 29, 629 – 636 ( 1981 )
dc.identifier.citedreferenceDe Zutter, D.: Reflections from linearly vibrating objects: plane mirror at oblique incidence. IEEE Trans. Antennas Propag. 30 ( 5 ), 898 – 903 ( 1982 )
dc.identifier.citedreferenceLawrence, D.E., Sarabandi, K.: Electromagnetic scattering from vibrating penetrable objects using a general class of time‐varying sheet boundary conditions. IEEE Trans. Antennas Propag. 54 ( 7 ), 2054 – 2061 ( 2006 )
dc.identifier.citedreferenceHoang, T., Lazarian, A., Schlickeiser, R.: On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays. Astrophys. J. 806, 255 ( 2015 )
dc.identifier.citedreferenceMessiaen, A.M., Vandenplas, P.E.: High‐frequency effect due to the axial drift velocity of a plasma column. Phys. Rev. 149 ( 1 ), 131 – 140 ( 1966 )
dc.identifier.citedreferenceYeh, C.: Scattering obliquely incident microwaves by a moving plasma column. J. Appl. Phys. 40 ( 13 ), 5066 – 5075 ( 1969 )
dc.identifier.citedreferenceShiozawa, T., Seikai, S.: Scattering of electromagnetic waves from an inhomogeneous magnetoplasma column moving in the axial direction. IEEE Trans. Antennas Propag. AP‐ 20 ( 4 ), 455 – 463 ( 1972 )
dc.identifier.citedreferenceYan, Y.: Mass flow measurement of bulk solids in pneumatic pipelines. Meas. Sci. Technol. 7 ( 12 ), 1687 – 1706 ( 1996 )
dc.identifier.citedreferenceEinstein, A.: Zur Elektrodynamik bewegter Körper. Annalen der Physik. 322 ( 10 ), 891 – 921 ( 1905 )
dc.identifier.citedreferenceSommerfeld, A.: Electrodynamics. Academic Press, New York ( 1952 )
dc.identifier.citedreferencePauli, W.: Theory of Relativity. Macmillan, New York ( 1958 )
dc.identifier.citedreferenceYeh, C.: Reflection and transmission of electromagnetic waves by a moving dielectric medium. J. Appl. Phys. 36 ( 11 ), 3513 – 3517 ( 1965 )
dc.identifier.citedreferenceVan, B.J.: Relativity and Engineering. Springer‐Verlag, Berlin ( 1984 )
dc.identifier.citedreferenceLee, S.W., Mittra, R.: Scattering of electromagnetic waves by a moving cylinder in free space. Canadian J. Phys. 45, 2999 – 3007 ( 1967 )
dc.identifier.citedreferenceCensor, D.: Scattering of electromagnetic waves by a cylinder moving along its axis. Microw. Theory Techn. 17, 154 – 158 ( 1969 )
dc.identifier.citedreferenceLe Vine, D.M.: Scattering from a moving cylinder, oblique incidence. Radio Sci. 15, 497 – 504 ( 1973 )
dc.identifier.citedreferenceFreni, A., Mias, C., Ferrari, R.L.: Finite element analysis of electromagnetic wave scattering by a cylinder moving along its axis surrounded by a longitudinal corrugated structure. IEEE Trans. Magnetics. 32 ( 3 ), 874 – 877 ( 1996 )
dc.identifier.citedreferencePastorino, M., Raffetto, M.: Scattering of electromagnetic waves from a multilayer elliptic cylinder moving in the axial direction. IEEE Trans. Antennas Propag. 61 ( 9 ), 4741 – 4753 ( 2013 )
dc.identifier.citedreferenceRestrick, R.C.: 111, Electromagnetic scattering by a moving conducting sphere. Radio ScL. 3 ( 12 ), 1144 – 1157 ( 1968 ). new series
dc.identifier.citedreferenceLakhtakia, A., Varadan, V.V., Varadan, V.K.: Plane wave scattering response of a simply moving electrically small, chiral sphere. J. Mod. Opt. 38, 1841 – 1847 ( 1991 )
dc.identifier.citedreferenceShiozawa, T.: Electromagnetic scattering by a moving small panicle. J. Appl. Phys. 39, 293 – 297 ( 1968 )
dc.identifier.citedreferenceCooper, J.: Scattering of electromagnetic fields by a moving boundary: The one‐dimensional case. IEEE Trans. Antennas Propag. 28 ( 6 ), 791 – 795 ( 1980 )
dc.identifier.citedreferenceChrissoulidis, D., Kriezis, E.: The scattering behavior of a slightly rough surface moving parallel to its mean plane with uniform velocity. IEEE Trans. Antennas Propag. 33 ( 7 ), 793 – 796 ( 1985 )
dc.identifier.citedreferenceTzikas, A.A., Chrissoulidis, D.P., Kriezis, E.E.: Relativistic bistatic scatering by a uniformly moving random rough surface. IEEE Trans. Antennas Propag. AP‐ 34, 1046 – 1052 ( 1986 )
dc.identifier.citedreferenceOtt, R.H., Hufford, G.: Scattering by an arbitrarily shaped conductor in uniform motion relative to the source of an incident spherical wave. Radio Sci. 3, 857 – 861 ( 1968 )
dc.identifier.citedreferenceTwersky, V.: Relativistic scattering of electromagnetic waves by moving obstacles. J. Math Phys. 12 ( 11 ), 2328 – 2341 ( 1971 )
dc.identifier.citedreferenceAbdelazeez, M., Peach, L.C., Borkar, S.R.: Scattering of electromagnetic waves from moving surfaces. IEEE Trans. Antennas Propag. 27 ( 5 ), 679 – 684 ( 1979 )
dc.identifier.citedreferenceDe Zutter, D.: Fourier analysis of the signal scattered by objects in translational motion, part I and II. Appl. Sci. Res. 36, 169 – 241 ( 1980 )
dc.identifier.citedreferenceMichielsen, B.L., et al.: Three‐dimensional relativistic scattering of electromagnetic waves by an object in uniform translation motion. J. Math. Phys. 22, 2716 – 2722 ( 1981 )
dc.identifier.citedreferenceDe Cupis, P., Gerosa, G., Schettini, G.: Electromagnetic scattering by an object in relativistic translational motion. J. Electromagn. Waves Appl. 14, 1037 – 1062 ( 2000 )
dc.identifier.citedreferenceDe Cupis, P., et al.: Electromagneticwave scattering by a perfectly conducting wedge in uniform translational motion. J. Electromagn. Waves Appl. 16, 345 – 364 ( 2002 )
dc.identifier.citedreferenceCiarkowski, A.: Scattering of an electromagnetic pulse by a moving wedge. IEEE Trans. Antennas Propag. 57, 688 – 693 ( 2009 )
dc.identifier.citedreferenceIdemen, M., Alkumru, A.: Relativistic scattering of a plane‐wave by a uniformly moving half‐plane. IEEE Trans. Antennas Propag. 13, 3429 – 3440 ( 2006 )
dc.identifier.citedreferenceCiarkowski, A.: Electromagnetic pulse diffraction by a moving halfplane. PIER. 64, 53 – 67 ( 2006 )
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.