Show simple item record

Visible‐Light Induced Sustainable Water Treatment Using Plasmo‐Semiconductor Nanogap Bridge Array, PNA

dc.contributor.authorMurphy, Emma
dc.contributor.authorLiu, Yunbo
dc.contributor.authorKrueger, Daniel
dc.contributor.authorPrasad, Meghna
dc.contributor.authorLee, Somin Eunice
dc.contributor.authorPark, Younggeun
dc.date.accessioned2021-03-02T21:43:08Z
dc.date.available2022-03-02 16:43:06en
dc.date.available2021-03-02T21:43:08Z
dc.date.issued2021-02
dc.identifier.citationMurphy, Emma; Liu, Yunbo; Krueger, Daniel; Prasad, Meghna; Lee, Somin Eunice; Park, Younggeun (2021). "Visible‐Light Induced Sustainable Water Treatment Using Plasmo‐Semiconductor Nanogap Bridge Array, PNA." Small 17(5): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/166356
dc.description.abstractThe development of sustainable methods for energy‐intensive water treatment processes continues to be a challenging issue. Plasmonic‐semiconductor nanoparticles, which absorb large amounts of sunlight in the visible range for conversion into chemical energy efficiently, can form the basis of a sustainable water treatment method. However, the potential uses of plasmonic semiconductor particles for water treatment have not been fully explored yet because of the limitations associated with the imbalance between light capture, charge transfer, and the required recycling steps for the particles themselves. Herein, a significantly improved visible‐light‐induced water treatment method that uses a plasmo‐semiconductor nanogap bridge array (PNA) is reported. As an arrangement of antenna‐reactors, the PNA enables the balancing of the largely enhanced electromagnetic field in the plasmonic nanogap coupling region and optimal separation of charge carriers in the semiconductor. The simultaneous effects of visible‐light absorption and charge transfer lead to the generation of a highly enhanced visible‐light‐induced OH radical (•OH). Consequently, visible‐light‐induced 5‐log N/N0 water disinfection and 100% chemical decomposition for sustainable water treatment were demonstrated. Owing to the large light absorption, charge carrier utilization, and array‐oriented scalability, the PNA will be valuable in various sustainable energy and environmental applications.The imbalance between light capture, charge transfer, and the required recycling steps has prohibited potential uses of plasmonic semiconductor structure for sustainable environmental process. This article presents a significantly improved visible‐light‐induced water treatment method that uses a plasmo‐semiconductor nanogap bridge array (PNA).
dc.publisherACS
dc.publisherWiley Periodicals, Inc.
dc.subject.otherinterfacial antibacterial method
dc.subject.otherlocalized surface plasmon resonance (LSPR)
dc.subject.otherplasmo‐semiconductor nanogap bridge
dc.subject.othersustainable water treatment
dc.subject.otherbacteria
dc.titleVisible‐Light Induced Sustainable Water Treatment Using Plasmo‐Semiconductor Nanogap Bridge Array, PNA
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166356/1/smll202006044.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166356/2/smll202006044_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166356/3/smll202006044-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/smll.202006044
dc.identifier.sourceSmall
dc.identifier.citedreferenceS. A. Maier, H. A. Atwater, J. Appl. Phys. 2005, 98, 011101.
dc.identifier.citedreferenceM. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca, H. Idriss, Nat. Chem. 2011, 3, 489.
dc.identifier.citedreferenceJ. B. Priebe, M. Karnahl, H. Junge, M. Beller, D. Hollmann, A. Brückner, Angew. Chem., Int. Ed. 2013, 52, 11420.
dc.identifier.citedreferenceY.‐C. Pu, G. Wang, K.‐D. Chang, Y. Ling, Y.‐K. Lin, B. C. Fitzmorris, C.‐M. Liu, X. Lu, Y. Tong, J. Z. Zhang, Nano Lett. 2013, 13, 3817.
dc.identifier.citedreferenceP. Christopher, H. Xin, S. Linic, Nat. Chem. 2011, 3, 467.
dc.identifier.citedreferenceP. Christopher, H. Xin, A. Marimuthu, S. Linic, Nat. Mater. 2012, 11, 1044.
dc.identifier.citedreferenceW. R. Erwin, H. F. Zarick, E. M. Talbert, R. Bardhan, Energy Environ. Sci. 2016, 9, 1577.
dc.identifier.citedreferenceJ. Li, S. K. Cushing, F. Meng, T. R. Senty, A. D. Bristow, N. Wu, Nat. Photonics 2015, 9, 601.
dc.identifier.citedreferenceS. Mukherjee, L. Zhou, A. M. Goodman, N. Large, C. Ayala‐Orozco, Y. Zhang, P. Nordlander, N. J. Halas, J. Am. Chem. Soc. 2014, 136, 64.
dc.identifier.citedreferenceA. Manjavacas, J. G. Liu, V. Kulkarni, P. Nordlander, ACS Nano 2014, 8, 7630.
dc.identifier.citedreferenceK. Wu, J. Chen, J. R. McBride, T. Lian, Science 2015, 349, 632.
dc.identifier.citedreferenceR. G. Zika, W. J. Cooper, Photochemistry of Environmental Aquatic Systems, ACS, Washington, DC 1987.
dc.identifier.citedreferenceB. C. Hodges, E. L. Cates, J.‐H. Kim, Nat. Nanotechnol. 2018, 13, 642.
dc.identifier.citedreferenceS. Griffin, N. P. Montoni, G. Li, P. J. Straney, J. E. Millstone, D. J. Masiello, J. P. Camden, J. Phys. Chem. Lett. 2016, 7, 3825.
dc.identifier.citedreferenceA. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, H. A. Atwater, ACS Nano 2016, 10, 957.
dc.identifier.citedreferenceC. Boerigter, R. Campana, M. Morabito, S. Linic, Nat. Commun. 2016, 7, 10545.
dc.identifier.citedreferenceM. Bernardi, J. Mustafa, J. B. Neaton, S. G. Louie, Nat. Commun. 2015, 6, 7044.
dc.identifier.citedreferenceM. Bernardi, M. Palummo, J. C. Grossman, Nano Lett. 2013, 13, 3664.
dc.identifier.citedreferenceK. Nakata, A. Fujishima, J. Photochem. Photobiol., C 2012, 13, 169.
dc.identifier.citedreferenceS. Girish Kumar, L. Gomathi Devi, J. Phys. Chem. A 2011, 115, 13211.
dc.identifier.citedreferenceY. Nakabayashi, Y. Nosaka, Phys. Chem. Chem. Phys. 2015, 17, 30570.
dc.identifier.citedreferenceC. Boerigter, U. Aslam, S. Linic, ACS Nano 2016, 10, 6108.
dc.identifier.citedreferenceS. Linic, U. Aslam, C. Boerigter, M. Morabito, Nat. Mater. 2015, 14, 567.
dc.identifier.citedreferenceY. Nakabayashi, Y. Nosaka, Phys. Chem. Chem. Phys. 2015, 17, 30570.
dc.identifier.citedreferenceJ. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chem. Rev. 2014, 114, 9919.
dc.identifier.citedreferenceM. Oteng‐Peprah, M. A. Acheampong, N. K. deVries, Water, Air, Soil Pollut. 2018, 229, 255.
dc.identifier.citedreferenceM. P. Gutierrez, L. P. Lee, Science 2013, 341, 247.
dc.identifier.citedreferenceO. R. Al‐Jayyousi, Desalination 2003, 156, 181.
dc.identifier.citedreferenceK. Tanaka, M. F. V. Capule, T. Hisanaga, Chem. Phys. Lett. 1991, 187, 73
dc.identifier.citedreferenceC. Clavero, Nat. Photonics 2014, 8, 95.
dc.identifier.citedreferenceC. Hägglund, G. Zeltzer, R. Ruiz, I. Thomann, H.‐B.‐R. Lee, M. L. Brongersma, S. F. Bent, Nano Lett. 2013, 13, 3352.
dc.identifier.citedreferenceK. Kimura, S. Naya, Y. Jin‐nouchi, H. Tada, J. Phys. Chem. C 2012, 116, 7111.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.