Show simple item record

The canonical RdDM pathway mediates the control of seed germination timing under salinity

dc.contributor.authorPalomar, Víctor Miguel
dc.contributor.authorGarciarrubio, Alejandro
dc.contributor.authorGaray‐arroyo, Adriana
dc.contributor.authorMartínez‐martínez, Coral
dc.contributor.authorRosas‐bringas, Omar
dc.contributor.authorReyes, José L.
dc.contributor.authorCovarrubias, Alejandra A.
dc.date.accessioned2021-03-02T21:43:34Z
dc.date.available2022-03-02 16:43:32en
dc.date.available2021-03-02T21:43:34Z
dc.date.issued2021-02
dc.identifier.citationPalomar, Víctor Miguel ; Garciarrubio, Alejandro; Garay‐arroyo, Adriana ; Martínez‐martínez, Coral ; Rosas‐bringas, Omar ; Reyes, José L. ; Covarrubias, Alejandra A. (2021). "The canonical RdDM pathway mediates the control of seed germination timing under salinity." The Plant Journal (3): 691-707.
dc.identifier.issn0960-7412
dc.identifier.issn1365-313X
dc.identifier.urihttps://hdl.handle.net/2027.42/166365
dc.publisherWiley Periodicals, Inc.
dc.subject.otherRdDM pathway
dc.subject.otherAGO4 protein
dc.subject.othergermination
dc.subject.otherArabidopsis
dc.subject.otherRNA- directed DNA methylation
dc.subject.othersalinity
dc.titleThe canonical RdDM pathway mediates the control of seed germination timing under salinity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166365/1/tpj15064_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166365/2/tpj15064.pdf
dc.identifier.doi10.1111/tpj.15064
dc.identifier.sourceThe Plant Journal
dc.identifier.citedreferencePopova, O.V., Dinh, H.Q., Aufsatz, W. and Jonak, C. ( 2013 ) The RdDM pathway is required for basal heat tolerance in Arabidopsis. Mol. Plant, 6, 396 - 410.
dc.identifier.citedreferenceSecco, D., Wang, C., Shou, H., Schultz, M.D., Chiarenza, S., Nussaume, L., Ecker, J.R., Whelan, J. and Lister, R. ( 2015 ) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife, 4, e09343.
dc.identifier.citedreferenceSkirycz, A. and Inze, D. ( 2010 ) More from less: plant growth under limited water. Curr. Opin. Biotechnol. 21, 197 - 203.
dc.identifier.citedreferenceSoppe, W.J., Jacobsen, S.E., Alonso- Blanco, C., Jackson, J.P., Kakutani, T., Koornneef, M. and Peeters, A.J. ( 2000 ) The late flowering phenotype of fwa mutants is caused by gain- of- function epigenetic alleles of a homeodomain gene. Mol. Cell, 6, 791 - 802.
dc.identifier.citedreferenceSun, L., Zhang, P., Wang, R., Wan, J., Ju, Q., Rothstein, S.J. and Xu, J. ( 2019 ) The SNAC- A transcription factor ANAC032 reprograms metabolism in arabidopsis. Plant Cell Physiol. 60, 999 - 1010.
dc.identifier.citedreferenceThomas, C.L., Bayer, E.M., Ritzenthaler, C., Fernandez- Calvino, L. and Maule, A.J. ( 2008 ) Specific targeting of a plasmodesmal protein affecting cell- to- cell communication. PLoS Biol. 6, e7.
dc.identifier.citedreferenceTricker, P.J., Gibbings, J.G., Rodriguez Lopez, C.M., Hadley, P. and Wilkinson, M.J. ( 2012 ) Low relative humidity triggers RNA- directed de novo DNA methylation and suppression of genes controlling stomatal development. J. Exp. Bot. 63, 3799 - 3813.
dc.identifier.citedreferenceVidal, E.A., Alvarez, J.M. and Gutierrez, R.A. ( 2014 ) Nitrate regulation of AFB3 and NAC4 gene expression in Arabidopsis roots depends on NRT1.1 nitrate transport function. Plant Signal. Behav. 9, e28501.
dc.identifier.citedreferenceVidal, E.A., Moyano, T.C., Riveras, E., Contreras- López, O. and Gutiérrez, R.A. ( 2013 ) Systems approaches map regulatory networks downstream of the auxin receptor AFB3 in the nitrate response of Arabidopsis thaliana roots. Proc. Natl. Acad. Sci. USA 110 ( 31 ), 12840 - 12845.
dc.identifier.citedreferenceWang, F. and Axtell, M.J. ( 2017 ) AGO4 is specifically required for heterochromatic siRNA accumulation at Pol V- dependent loci in Arabidopsis thaliana. Plant J. 90, 37 - 47.
dc.identifier.citedreferenceWang, G. and Köhler, C. ( 2017 ) Epigenetic processes in flowering plant reproduction. J. Exp. Bot. 68, 797 - 807.
dc.identifier.citedreferenceWang, Y., Liu, C., Li, K. et al. ( 2007 ) Arabidopsis EIN2 modulates stress response through abscisic acid response pathway. Plant Mol. Biol. 64, 633 - 644.
dc.identifier.citedreferenceWang, Z., Butel, N., Santos- Gonzalez, J., Borges, F., Yi, J., Martienssen, R.A., Martinez, G. and Kohler, C. ( 2020 ) Polymerase IV plays a crucial role in pollen development in capsella. Plant Cell, 32, 950 - 966.
dc.identifier.citedreferenceWei, L., Gu, L., Song, X. et al. ( 2014 ) Dicer- like 3 produces transposable element- associated 24- nt siRNAs that control agricultural traits in rice. Proc. Natl Acad. Sci. USA, 111, 3877 - 3882.
dc.identifier.citedreferenceWierzbicki, A.T., Cocklin, R., Mayampurath, A., Lister, R., Rowley, M.J., Gregory, B.D., Ecker, J.R., Tang, H. and Pikaard, C.S. ( 2012 ) Spatial and functional relationships among Pol V- associated loci, Pol IV- dependent siRNAs, and cytosine methylation in the Arabidopsis epigenome. Genes Dev. 26, 1825 - 1836.
dc.identifier.citedreferenceWierzbicki, A.T., Ream, T.S., Haag, J.R. and Pikaard, C.S. ( 2009 ) RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41, 630 - 634.
dc.identifier.citedreferenceWinter, V. and Hauser, M.T. ( 2006 ) Exploring the ESCRTing machinery in eukaryotes. Trends Plant Sci. 11 ( 3 ), 115 - 123.
dc.identifier.citedreferenceWu, L., Zhou, H., Zhang, Q., Zhang, J., Ni, F., Liu, C. and Qi, Y. ( 2010 ) DNA methylation mediated by a microRNA pathway. Mol. Cell, 38, 465 - 475.
dc.identifier.citedreferenceYaari, R., Katz, A., Domb, K., Harris, K.D., Zemach, A. and Ohad, N. ( 2019 ) RdDM- independent de novo and heterochromatin DNA methylation by plant CMT and DNMT3 orthologs. Nat. Commun. 10, 1613.
dc.identifier.citedreferenceYamaguchi- Shinozaki, K. and Shinozaki, K. ( 2006 ) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781 - 803.
dc.identifier.citedreferenceYang, L.P., Fang, Y.Y., An, C.P., Dong, L., Zhang, Z.H., Chen, H., Xie, Q. and Guo, H.S. ( 2013 ) C2- mediated decrease in DNA methylation, accumulation of siRNAs, and increase in expression for genes involved in defense pathways in plants infected with beet severe curly top virus. Plant J. 73, 910 - 917.
dc.identifier.citedreferenceYe, R., Wang, W., Iki, T., Liu, C., Wu, Y., Ishikawa, M., Zhou, X. and Qi, Y. ( 2012 ) Cytoplasmic assembly and selective nuclear import of Arabidopsis Argonaute4/siRNA complexes. Mol. Cell, 46, 859 - 870.
dc.identifier.citedreferenceZhai, J., Bischof, S., Wang, H. et al. ( 2015 ) A one precursor one siRNA model for Pol IV- dependent siRNA biogenesis. Cell, 163, 445 - 455.
dc.identifier.citedreferenceZhang, H. and Zhu, J.K. ( 2012 ) Seeing the forest for the trees: a wide perspective on RNA- directed DNA methylation. Genes Dev. 26, 1769 - 1773.
dc.identifier.citedreferenceZheng, Q., Rowley, M.J., Bohmdorfer, G., Sandhu, D., Gregory, B.D. and Wierzbicki, A.T. ( 2013 ) RNA polymerase V targets transcriptional silencing components to promoters of protein- coding genes. Plant J. 73, 179 - 189.
dc.identifier.citedreferenceZhu, J.K. ( 2002 ) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247 - 273.
dc.identifier.citedreferenceZilberman, D., Cao, X. and Jacobsen, S.E. ( 2003 ) ARGONAUTE4 control of locus- specific siRNA accumulation and DNA and histone methylation. Science, 299, 716 - 719.
dc.identifier.citedreferenceAgorio, A. and Vera, P. ( 2007 ) ARGONAUTE4 is required for resistance to Pseudomonas syringae in Arabidopsis. Plant Cell, 19, 3778 - 3790.
dc.identifier.citedreferenceAkalin, A., Kormaksson, M., Li, S., Garrett- Bakelman, F.E., Figueroa, M.E., Melnick, A. and Mason, C.E. ( 2012 ) methylKit: a comprehensive R package for the analysis of genome- wide DNA methylation profiles. Genome Biol. 13, R87.
dc.identifier.citedreferenceAu, P.C.K., Dennis, E.S. and Wang, M.B. ( 2017 ) Analysis of Argonaute 4- associated long non- coding RNA in Arabidopsis thaliana sheds novel insights into gene regulation through RNA- directed DNA methylation. Genes, 8, 198.
dc.identifier.citedreferenceBecerra, C., Jahrmann, T., Puigdomènech, P. and Vicient, C.M. ( 2004 ) Ankyrin repeat- containing proteins in Arabidopsis: characterization of a novel and abundant group of genes coding ankyrin- transmembrane proteins. Gene, 340 ( 1 ), 111 - 121.
dc.identifier.citedreferenceBinder, B.M., Walker, J.M., Gagne, J.M., Emborg, T.J., Hemmann, G., Bleecker, A.B. and Vierstra, R.D. ( 2007 ) The Arabidopsis EIN3 binding F- Box proteins EBF1 and EBF2 have distinct but overlapping roles in ethylene signaling. Plant Cell, 19, 509 - 523.
dc.identifier.citedreferenceBlevins, T., Podicheti, R., Mishra, V., Marasco, M., Wang, J., Rusch, D., Tang, H. and Pikaard, C.S. ( 2015 ) Identification of Pol IV and RDR2- dependent precursors of 24 nt siRNAs guiding de novo DNA methylation in Arabidopsis. eLife, 4, e09591.
dc.identifier.citedreferenceBohmdorfer, G., Sethuraman, S., Rowley, M.J., Krzyszton, M., Rothi, M.H., Bouzit, L. and Wierzbicki, A.T. ( 2016 ) Long non- coding RNA produced by RNA polymerase V determines boundaries of heterochromatin. eLife, 5, e19092.
dc.identifier.citedreferenceBorges, F., Parent, J.- S., van Ex, F., Wolff, P., Martínez, G., Köhler, C. and Martienssen, R.A. ( 2018 ) Transposon- derived small RNAs triggered by miR845 mediate genome dosage response in Arabidopsis. Nat. Genet. 50, 186 - 192.
dc.identifier.citedreferenceBrosseau, C., El Oirdi, M., Adurogbangba, A., Ma, X. and Moffett, P. ( 2016 ) Antiviral defense involves AGO4 in an arabidopsis- potexvirus interaction. Mol. Plant Microbe Interact. 29, 878 - 888.
dc.identifier.citedreferenceChan, Z., Wang, Y., Cao, M., Gong, Y., Mu, Z., Wang, H., Hu, Y., Deng, X., He, X.J. and Zhu, J.K. ( 2016 ) RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF- mediated pathway. New Phytol. 209, 1527 - 1539.
dc.identifier.citedreferenceChen, C., Khaleel, S.S., Huang, H. and Wu, C.H. ( 2014 ) Software for pre- processing Illumina next- generation sequencing short read sequences. Source Code Biol. Med. 9, 8.
dc.identifier.citedreferenceCheng, Y., Zhou, Y., Yang, Y. et al. ( 2012 ) Structural and functional analysis of VQ motif- containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiol. 159 ( 2 ), 810 - 825.
dc.identifier.citedreferenceChinnusamy, V. and Zhu, J.K. ( 2009 ) Epigenetic regulation of stress responses in plants. Curr. Opin. Plant Biol. 12, 133 - 139.
dc.identifier.citedreferenceChow, H.T., Chakraborty, T. and Mosher, R.A. ( 2020 ) RNA- directed DNA Methylation and sexual reproduction: expanding beyond the seed. Curr. Opin. Plant Biol. 54, 11 - 17.
dc.identifier.citedreferenceCorbineau, F., Xia, Q., Bailly, C. and El- Maarouf- Bouteau, H. ( 2014 ) Ethylene, a key factor in the regulation of seed dormancy. Front. Plant Sci. 5, 539.
dc.identifier.citedreferenceCorem, S., Doron- Faigenboim, A., Jouffroy, O., Maumus, F., Arazi, T. and Bouche, N. ( 2018 ) Redistribution of CHH methylation and small interfering RNAs across the genome of tomato ddm1 mutants. Plant Cell, 30, 1628 - 1644.
dc.identifier.citedreferenceCubas, P., Vincent, C. and Coen, E. ( 1999 ) An epigenetic mutation responsible for natural variation in floral symmetry. Nature, 401, 157 - 161.
dc.identifier.citedreferenceCutler, S.R., Rodriguez, P.L., Finkelstein, R.R. and Abrams, S.R. ( 2010 ) Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651 - 679.
dc.identifier.citedreferenceDowen, R.H., Pelizzola, M., Schmitz, R.J., Lister, R., Dowen, J.M., Nery, J.R., Dixon, J.E. and Ecker, J.R. ( 2012 ) Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl Acad. Sci. USA, 109, E2183 - 2191.
dc.identifier.citedreferenceDuan, C.G., Zhang, H., Tang, K. et al. ( 2015 ) Specific but interdependent functions for Arabidopsis AGO4 and AGO6 in RNA- directed DNA methylation. EMBO J. 34, 581 - 592.
dc.identifier.citedreferenceEun, C., Lorkovic, Z.J., Naumann, U., Long, Q., Havecker, E.R., Simon, S.A., Meyers, B.C., Matzke, A.J. and Matzke, M. ( 2011 ) AGO6 functions in RNA- mediated transcriptional gene silencing in shoot and root meristems in Arabidopsis thaliana. PLoS One, 6, e25730.
dc.identifier.citedreferenceFaus, I., Ninoles, R., Kesari, V., Llabata, P., Tam, E., Nebauer, S.G., Santiago, J., Hauser, M.T. and Gadea, J. ( 2018 ) Arabidopsis ILITHYIA protein is necessary for proper chloroplast biogenesis and root development independent of eIF2alpha phosphorylation. J. Plant Physiol. 224- 225, 173 - 182.
dc.identifier.citedreferenceGallego- Bartolome, J., Liu, W., Kuo, P.H., Feng, S., Ghoshal, B., Gardiner, J., Zhao, J.M., Park, S.Y., Chory, J. and Jacobsen, S.E. ( 2019 ) Co- targeting RNA polymerases IV and V promotes efficient de novo DNA methylation in Arabidopsis. Cell, 176 ( 5 ), 1068 - 1082.e19.
dc.identifier.citedreferenceGao, Y.Q., Chen, J.G., Chen, Z.R., An, D., Lv, Q.Y., Han, M.L., Wang, Y.L., Salt, D.E. and Chao, D.Y. ( 2017 ) A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis. PLoS Biol. 15 ( 12 ), e2002978.
dc.identifier.citedreferenceGissot, L., Polge, C., Jossier, M., Girin, T., Bouly, J.P., Kreis, M. and Thomas, M. ( 2006 ) AKINbetagamma contributes to SnRK1 heterotrimeric complexes and interacts with two proteins implicated in plant pathogen resistance through its KIS/GBD sequence. Plant Physiol. 142 ( 3 ), 931 - 944.
dc.identifier.citedreferenceGohlke, J., Scholz, C.J., Kneitz, S., Weber, D., Fuchs, J., Hedrich, R. and Deeken, R. ( 2013 ) DNA methylation mediated control of gene expression is critical for development of crown gall tumors. PLoS Genet. 9, e1003267.
dc.identifier.citedreferenceGouil, Q. and Baulcombe, D.C. ( 2016 ) DNA methylation signatures of the plant chromomethyltransferases. PLoS Genet. 12, e1006526.
dc.identifier.citedreferenceGrover, J.W., Kendall, T., Baten, A., Burgess, D., Freeling, M., King, G.J. and Mosher, R.A. ( 2018 ) Maternal components of RNA- directed DNA methylation are required for seed development in Brassica rapa. Plant J. 94, 575 - 582.
dc.identifier.citedreferenceHaag, J.R. and Pikaard, C.S. ( 2011 ) Multisubunit RNA polymerases IV and V: purveyors of non- coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 12, 483 - 492.
dc.identifier.citedreferenceHamera, S., Song, X., Su, L., Chen, X. and Fang, R. ( 2012 ) Cucumber mosaic virus suppressor 2b binds to AGO4- related small RNAs and impairs AGO4 activities. Plant J. 69, 104 - 115.
dc.identifier.citedreferenceHan, S.K. and Wagner, D. ( 2014 ) Role of chromatin in water stress responses in plants. J. Exp. Bot. 65, 2785 - 2799.
dc.identifier.citedreferenceHavecker, E.R., Wallbridge, L.M., Hardcastle, T.J., Bush, M.S., Kelly, K.A., Dunn, R.M., Schwach, F., Doonan, J.H. and Baulcombe, D.C. ( 2010 ) The Arabidopsis RNA- directed DNA methylation argonautes functionally diverge based on their expression and interaction with target loci. Plant Cell, 22, 321 - 334.
dc.identifier.citedreferenceHenderson, I.R., Zhang, X., Lu, C., Johnson, L., Meyers, B.C., Green, P.J. and Jacobsen, S.E. ( 2006 ) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat. Genet. 38, 721 - 725.
dc.identifier.citedreferenceHollick, J.B. ( 2010 ) Paramutation and development. Annu. Rev. Cell Dev. Biol. 26, 557 - 579.
dc.identifier.citedreferenceIto, H., Gaubert, H., Bucher, E., Mirouze, M., Vaillant, I. and Paszkowski, J. ( 2011 ) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature, 472, 115 - 119.
dc.identifier.citedreferenceIwasaki, M., Hyvärinen, L., Piskurewicz, U. and Lopez- Molina, L. ( 2019 ) Non- canonical RNA- directed DNA methylation participates in maternal and environmental control of seed dormancy. eLife, 8, e37434.
dc.identifier.citedreferenceJacobs, J. and Roe, J.L. ( 2005 ) SKS6, a multicopper oxidase- like gene, participates in cotyledon vascular patterning during Arabidopsis thaliana development. Planta, 222, 652 - 666.
dc.identifier.citedreferenceJing, Y. and Lin, R. ( 2015 ) The VQ motif- containing protein family of plant- specific transcriptional regulators. Plant Physiol. 169 ( 1 ), 371 - 378.
dc.identifier.citedreferenceKawakatsu, T., Nery, J.R., Castanon, R. and Ecker, J.R. ( 2017 ) Dynamic DNA methylation reconfiguration during seed development and germination. Genome Biol. 18, 171.
dc.identifier.citedreferenceKawakatsu, T., Stuart, T., Valdes, M. et al. ( 2016 ) Unique cell- type- specific patterns of DNA methylation in the root meristem. Nat. Plants, 2, 16058.
dc.identifier.citedreferenceKinoshita, T. and Seki, M. ( 2014 ) Epigenetic memory for stress response and adaptation in plants. Plant Cell Physiol. 55, 1859 - 1863.
dc.identifier.citedreferenceKirkbride, R.C., Lu, J., Zhang, C., Mosher, R.A., Baulcombe, D.C. and Chen, Z.J. ( 2019 ) Maternal small RNAs mediate spatial- temporal regulation of gene expression, imprinting, and seed development in Arabidopsis. Proc. Natl Acad. Sci. USA, 116, 2761 - 2766.
dc.identifier.citedreferenceKöhler, C. and Lafon- Placette, C. ( 2015 ) Evolution and function of epigenetic processes in the endosperm. Front. Plant Sci. 6, 130.
dc.identifier.citedreferenceKradolfer, D., Wolff, P., Jiang, H., Siretskiy, A. and Kohler, C. ( 2013 ) An imprinted gene underlies postzygotic reproductive isolation in Arabidopsis thaliana. Dev. Cell, 26, 525 - 535.
dc.identifier.citedreferenceKrueger, F. and Andrews, S.R. ( 2011 ) Bismark: a flexible aligner and methylation caller for Bisulfite- Seq applications. Bioinformatics, 27, 1571 - 1572.
dc.identifier.citedreferenceKurihara, Y., Matsui, A., Kawashima, M. et al. ( 2008 ) Identification of the candidate genes regulated by RNA- directed DNA methylation in Arabidopsis. Biochem. Biophys. Res. Commun. 376, 553 - 557.
dc.identifier.citedreferenceLaw, J.A. and Jacobsen, S.E. ( 2010 ) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204 - 220.
dc.identifier.citedreferenceLe, T.N., Schumann, U., Smith, N.A. et al. ( 2014 ) DNA demethylases target promoter transposable elements to positively regulate stress responsive genes in Arabidopsis. Genome Biol. 15, 458.
dc.identifier.citedreferenceLee, M.H., Jeon, H.S., Kim, H.G. and Park, O.K. ( 2017 ) An Arabidopsis NAC transcription factor NAC4 promotes pathogen- induced cell death under negative regulation by microRNA164. New Phytol. 214, 343 - 360.
dc.identifier.citedreferenceLeubner- Metzger, G., Petruzzelli, L., Waldvogel, R., Vogeli- Lange, R. and Meins, F. Jr ( 1998 ) Ethylene- responsive element binding protein (EREBP) expression and the transcriptional regulation of class I beta- 1,3- glucanase during tobacco seed germination. Plant Mol. Biol. 38, 785 - 795.
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.; 1000 Genome Project Data Processing Subgroup. ( 2009 ) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078 - 2079.
dc.identifier.citedreferenceLi, X., Chen, T., Li, Y., Wang, Z., Cao, H., Chen, F., Li, Y., Soppe, W.J.J., Li, W. and Liu, Y. ( 2019 ) ETR1/RDO3 regulates seed dormancy by relieving the inhibitory effect of the ERF12- TPL complex on DELAY OF GERMINATION1 expression. Plant Cell, 31, 832 - 847.
dc.identifier.citedreferenceLin, Y., Yang, L., Paul, M., Zu, Y. and Tang, Z. ( 2013 ) Ethylene promotes germination of Arabidopsis seed under salinity by decreasing reactive oxygen species: evidence for the involvement of nitric oxide simulated by sodium nitroprusside. Plant Physiol. Biochem. 73, 211 - 218.
dc.identifier.citedreferenceLiu, X., Zhang, H., Zhao, Y., Feng, Z., Li, Q., Yang, H.Q., Luan, S., Li, J. and He, Z.H. ( 2013 ) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF- mediated ABI3 activation in Arabidopsis. Proc. Natl Acad. Sci. USA, 110, 15485 - 15490.
dc.identifier.citedreferenceLopez, A., Ramirez, V., Garcia- Andrade, J., Flors, V. and Vera, P. ( 2011 ) The RNA silencing enzyme RNA polymerase v is required for plant immunity. PLoS Genet. 7, e1002434.
dc.identifier.citedreferenceLowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. ( 1951 ) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265 - 275.
dc.identifier.citedreferenceMahfouz, M.M. ( 2010 ) RNA- directed DNA methylation: mechanisms and functions. Plant Signal. Behav. 5, 806 - 816.
dc.identifier.citedreferenceManning, K., Tor, M., Poole, M., Hong, Y., Thompson, A.J., King, G.J., Giovannoni, J.J. and Seymour, G.B. ( 2006 ) A naturally occurring epigenetic mutation in a gene encoding an SBP- box transcription factor inhibits tomato fruit ripening. Nat. Genet. 38, 948 - 952.
dc.identifier.citedreferenceMartinez, G., Wolff, P., Wang, Z., Moreno- Romero, J., Santos- Gonzalez, J., Conze, L.L., DeFraia, C., Slotkin, R.K. and Kohler, C. ( 2018 ) Paternal easiRNAs regulate parental genome dosage in Arabidopsis. Nat. Genet. 50, 193 - 198.
dc.identifier.citedreferenceMatsunaga, W., Kobayashi, A., Kato, A. and Ito, H. ( 2012 ) The effects of heat induction and the siRNA biogenesis pathway on the transgenerational transposition of ONSEN, a copia- like retrotransposon in Arabidopsis thaliana. Plant Cell Physiol. 53, 824 - 833.
dc.identifier.citedreferenceMatzke, M.A., Kanno, T. and Matzke, A.J. ( 2015 ) RNA- directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66, 243 - 267.
dc.identifier.citedreferenceMatzke, M.A. and Mosher, R.A. ( 2014 ) RNA- directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet. 15, 394 - 408.
dc.identifier.citedreferenceMaurer- Stroh, S., Dickens, N.J., Hughes- Davies, L., Kouzarides, T., Eisenhaber, F. and Ponting, C.P. ( 2003 ) The Tudor domain ’Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem. Sci. 28 ( 2 ), 69 - 74.
dc.identifier.citedreferenceMcCue, A.D., Panda, K., Nuthikattu, S., Choudury, S.G., Thomas, E.N. and Slotkin, R.K. ( 2015 ) ARGONAUTE 6 bridges transposable element mRNA- derived siRNAs to the establishment of DNA methylation. EMBO J. 34, 20 - 35.
dc.identifier.citedreferenceMelnyk, C.W., Molnar, A. and Baulcombe, D.C. ( 2011 ) Intercellular and systemic movement of RNA silencing signals. EMBO J. 30, 3553 - 3563.
dc.identifier.citedreferenceMerchante, C., Alonso, J.M. and Stepanova, A.N. ( 2013 ) Ethylene signaling: simple ligand, complex regulation. Curr. Opin. Plant Biol. 16, 554 - 560.
dc.identifier.citedreferenceMolinier, J., Ries, G., Zipfel, C. and Hohn, B. ( 2006 ) Transgeneration memory of stress in plants. Nature, 442, 1046 - 1049.
dc.identifier.citedreferenceMylne, J.S., Wang, C.K., van der Weerden, N.L. and Craik, D.J. ( 2010 ) Cyclotides are a component of the innate defense of Oldenlandia affinis. Biopolymers, 94, 635 - 646.
dc.identifier.citedreferenceNakashima, K., Ito, Y. and Yamaguchi- Shinozaki, K. ( 2009 ) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149, 88 - 95.
dc.identifier.citedreferenceNee, G., Kramer, K., Nakabayashi, K., Yuan, B., Xiang, Y., Miatton, E., Finkemeier, I. and Soppe, W.J.J. ( 2017 ) DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nat. Commun. 8, 72.
dc.identifier.citedreferenceNishimura, N., Tsuchiya, W., Moresco, J.J. et al. ( 2018 ) Control of seed dormancy and germination by DOG1- AHG1 PP2C phosphatase complex via binding to heme. Nat. Commun. 9, 2132.
dc.identifier.citedreferenceNishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K. and Hirayama, T. ( 2007 ) ABA- hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant J. 50, 935 - 949.
dc.identifier.citedreferenceOlmedo- Monfil, V., Duran- Figueroa, N., Arteaga- Vazquez, M., Demesa- Arevalo, E., Autran, D., Grimanelli, D., Slotkin, R.K., Martienssen, R.A. and Vielle- Calzada, J.P. ( 2010 ) Control of female gamete formation by a small RNA pathway in Arabidopsis. Nature, 464, 628 - 632.
dc.identifier.citedreferenceOlvera- Carrillo, Y., Campos, F., Reyes, J.L., Garciarrubio, A. and Covarrubias, A.A. ( 2010 ) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiol. 154, 373 - 390.
dc.identifier.citedreferencePecinka, A. and Mittelsten Scheid, O. ( 2012 ) Stress- induced chromatin changes: a critical view on their heritability. Plant Cell Physiol. 53, 801 - 808.
dc.identifier.citedreferencePirrello, J., Jaimes- Miranda, F., Sanchez- Ballesta, M.T., Tournier, B., Khalil- Ahmad, Q., Regad, F., Latche, A., Pech, J.C. and Bouzayen, M. ( 2006 ) Sl- ERF2, a tomato ethylene response factor involved in ethylene response and seed germination. Plant Cell Physiol. 47, 1195 - 1205.
dc.identifier.citedreferencePontier, D., Yahubyan, G., Vega, D., Bulski, A., Saez- Vasquez, J., Hakimi, M.A., Lerbs- Mache, S., Colot, V. and Lagrange, T. ( 2005 ) Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes Dev. 19, 2030 - 2040.
dc.identifier.citedreferenceRobinson, M.D. and Smyth, G.K. ( 2008 ) Small- sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321 - 332.
dc.identifier.citedreferenceSarkies, P. and Miska, E.A. ( 2014 ) Small RNAs break out: the molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15, 525 - 535.
dc.identifier.citedreferenceSchoft, V.K., Chumak, N., Mosiolek, M., Slusarz, L., Komnenovic, V., Brownfield, L., Twell, D., Kakutani, T. and Tamaru, H. ( 2009 ) Induction of RNA- directed DNA methylation upon decondensation of constitutive heterochromatin. EMBO Rep. 10, 1015 - 1021.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.