Show simple item record

Highly Uniform, Self- Assembled AlGaN Nanowires for Self- Powered Solar- Blind Photodetector with Fast- Response Speed and High Responsivity

dc.contributor.authorWang, Danhao
dc.contributor.authorHuang, Chen
dc.contributor.authorLiu, Xin
dc.contributor.authorZhang, Haochen
dc.contributor.authorYu, Huabin
dc.contributor.authorFang, Shi
dc.contributor.authorOoi, Boon S.
dc.contributor.authorMi, Zetian
dc.contributor.authorHe, Jr‐hau
dc.contributor.authorSun, Haiding
dc.date.accessioned2021-03-02T21:43:38Z
dc.date.available2022-03-02 16:43:35en
dc.date.available2021-03-02T21:43:38Z
dc.date.issued2021-02
dc.identifier.citationWang, Danhao; Huang, Chen; Liu, Xin; Zhang, Haochen; Yu, Huabin; Fang, Shi; Ooi, Boon S.; Mi, Zetian; He, Jr‐hau ; Sun, Haiding (2021). "Highly Uniform, Self- Assembled AlGaN Nanowires for Self- Powered Solar- Blind Photodetector with Fast- Response Speed and High Responsivity." Advanced Optical Materials 9(4): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/166366
dc.description.abstractSearching for power- independent, compact, and highly environment- sensitive photodetectors is a critical step towards the realization of next- generation energy- efficient and sustainable integrated optoelectronic systems. Particularly, the deep ultraviolet (UV) band, which has large photon energy, is extremely suitable for environment monitoring and invisible light communication application. Herein, the demonstration of self- powered deep UV solar- blind photodetectors in a photoelectrochemical (PEC) cell configuration is reported, adopting wide bandgap n- type aluminum gallium nitride (AlGaN) nanowires as photoelectrode. After decorating nanowires with noble metal ruthenium (Ru), the constructed solar- blind PEC photodetectors exhibited excellent responsivity of 48.8 mA W- 1, fast response speed (rise time of 83 ms and decay time of 19 ms) with large photocurrent density of 55 μA cm- 2 at 254 nm illumination. Such superior performance can be attributed to, firstly and foremost, the successful synthesis of highly uniform and defect- free n- type AlGaN nanowires which ensures efficient photogeneration via effective light- harvesting, and secondly, the boosted carrier separation and collection efficiency through Ru decoration. This novel nanoarchitecture enables deep UV photodetection to work stably with low energy consumption, intriguingly, opening the possibility for the development of high- performance PEC photodetectors based on group III- nitride semiconductors covering the entire spectral range from infrared to deep UV.Highly uniform, self- assembled n- type aluminum gallium nitride (AlGaN) nanowires fabricated as self- powered solar- blind photoelectrochemical photodetector with fast- response speed and high responsivity are demonstrated. Owing to the defect- free wide bandgap AlGaN- based nanowires with appropriate surface decoration, the high- performance solar- blind photodetection is realized. The proposed novel device architecture unveils an unprecedented opportunity for designing future energy- efficient and sustainable optoelectronic systems.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersolar- blind photodetectors
dc.subject.otherphotoelectrochemical photodetectors
dc.subject.otherself- powered devices
dc.subject.otherAlGaN nanowires
dc.titleHighly Uniform, Self- Assembled AlGaN Nanowires for Self- Powered Solar- Blind Photodetector with Fast- Response Speed and High Responsivity
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166366/1/adom202000893.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166366/2/adom202000893_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166366/3/adom202000893-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/adom.202000893
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceK. Chen, S. Wang, C. He, H. Zhu, H. Zhao, D. Guo, Z. Chen, J. Shen, P. Li, A. Liu, C. Li, ACS Appl. Nano Mater. 2019, 2, 6169.
dc.identifier.citedreferenceB. Janjua, H. Sun, C. Zhao, D. H. Anjum, F. Wu, A. A. Alhamoud, X. Li, A. M. Albadri, A. Y. Alyamani, M. M. El- Desouki, Nanoscale 2017, 9, 7805.
dc.identifier.citedreferenceY. Cao, D. Wang, Y. Lin, W. Liu, L. Cao, X. Liu, W. Zhang, X. Mou, S. Fang, X. Shen, T. Yao, ACS Appl. Energy Mater. 2018, 1, 6082.
dc.identifier.citedreferenceS. Vanka, E. Arca, S. Cheng, K. Sun, G. A. Botton, G. Teeter, Z. Mi, Nano Lett. 2018, 18, 6530.
dc.identifier.citedreferenceX. Guan, F. A. Chowdhury, N. Pant, L. Guo, L. Vayssieres, Z. Mi, J. Phys. Chem. C 2018, 122, 13797.
dc.identifier.citedreferenceK. Yamano, K. Kishino, H. Sekiguchi, T. Oto, A. Wakahara, Y. Kawakami, J. Cryst. Growth 2015, 425, 316.
dc.identifier.citedreferenceL. Zhang, J. Ran, S. Z. Qiao, M. Jaroniec, Chem. Soc. Rev. 2019, 48, 5184.
dc.identifier.citedreferenceW. Liu, L. Cao, W. Cheng, Y. Cao, X. Liu, W. Zhang, X. Mou, L. Jin, X. Zheng, W. Che, Q. Liu, T. Yao, S. Wei, Angew. Chem., Int. Ed. 2017, 56, 9312.
dc.identifier.citedreferenceY. Cao, S. Chen, Q. Luo, H. Yan, Y. Lin, W. Liu, L. Cao, J. Lu, J. Yang, T. Yao, S. Wei, Angew. Chem., Int. Ed. 2017, 56, 12191.
dc.identifier.citedreferenceS. Chen, T. Takata, K. Domen, Nat. Rev. Mater. 2017, 2, 17050.
dc.identifier.citedreferenceC. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Z. Jiang, E. Ringe, B. I. Yakobson, J. Dong, D. Chen, J. M. Tour, ACS Nano 2017, 11, 6930.
dc.identifier.citedreferenceR. Jiang, X. Meng, J. Mater. Sci.: Mater. Electron. 2019, 30, 16266.
dc.identifier.citedreferenceL. Zeng, H. Peng, W. Liu, J. Yin, L. Xiao, J. Lu, L. Zhuang, J. Power Sources 2020, 461, 228147.
dc.identifier.citedreferenceJ. Zhang, S. Jiao, D. Wang, S. Ni, S. Gao, J. Wang, J. Mater. Chem. C 2019, 7, 6867.
dc.identifier.citedreferenceC. He, D. Guo, K. Chen, S. Wang, J. Shen, N. Zhao, A. Liu, Y. Zheng, P. Li, Z. Wu, C. Li, ACS Appl. Nano Mater. 2019, 2, 4095.
dc.identifier.citedreferenceM. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, Z. Mi, Nat. Commun. 2014, 5, 3825.
dc.identifier.citedreferenceM. Kraut, F. Pantle, J. Winnerl, M. Hetzl, F. Eckmann, I. D. Sharp, M. Stutzmann, Nanoscale 2019, 11, 7967.
dc.identifier.citedreferenceJ. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, H. Riechert, J. Am. Chem. Soc. 2013, 135, 10242.
dc.identifier.citedreferenceJ. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, H. Riechert, Nano Lett. 2017, 17, 1529.
dc.identifier.citedreferenceY. Zhang, F. Zhang, Y. Xu, W. Huang, L. Wu, Y. Zhang, X. Zhang, H. Zhang, Adv. Funct. Mater. 2019, 29, 1906610.
dc.identifier.citedreferenceL. Zeng, L. Tao, C. Tang, B. Zhou, H. Long, Y. Chai, S. P. Lau, Y. H. Tsang, Sci. Rep. 2016, 6, 20343.
dc.identifier.citedreferenceO. Game, U. Singh, T. Kumari, A. Banpurkar, S. Ogale, Nanoscale 2014, 6, 503.
dc.identifier.citedreferenceY. Han, C. Fan, G. Wu, H. Z. Chen, M. Wang, J. Phys. Chem. C 2011, 115, 13438.
dc.identifier.citedreferenceL. Chen, X. Li, Y. Wang, C. Gao, H. Zhang, B. Zhao, F. Teng, J. Zhou, Z. Zhang, X. Pan, J. Power Sources 2014, 272, 886.
dc.identifier.citedreferenceQ. Li, L. Wei, Y. Xie, K. Zhang, L. Liu, D. Zhu, J. Jiao, Y. Chen, S. Yan, G. Liu, Nanoscale Res. Lett. 2013, 8, 415.
dc.identifier.citedreferenceC. Cao, C. Hu, X. Wang, S. Wang, Y. Tian, H. Zhang, Sens. Actuators, B 2011, 156, 114.
dc.identifier.citedreferenceY. Xie, L. Wei, G. Wei, Q. Li, D. Wang, Y. Chen, S. Yan, G. Liu, L. Mei, J. Jiao, Nanoscale Res. Lett. 2013, 8, 188.
dc.identifier.citedreferenceX. Li, C. Gao, H. Duan, B. Lu, Y. Wang, L. Chen, Z. Zhang, X. Pan, E. Xie, Small 2013, 9, 2005.
dc.identifier.citedreferenceH. Sun, M. K. Shakfa, M. M. Muhammed, B. Janjua, K.- H. Li, R. Lin, T. K. Ng, I. S. Roqan, B. S. Ooi, X. Li, ACS Photonics 2018, 5, 964.
dc.identifier.citedreferenceX. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, J. Yao, Nature 2020, 578, 550.
dc.identifier.citedreferenceS. Park, S. W. Heo, W. Lee, D. Inoue, Z. Jiang, K. Yu, H. Jinno, D. Hashizume, M. Sekino, T. Yokota, K. Fukuda, K. Tajima, T. Someya, Nature 2018, 561, 516.
dc.identifier.citedreferenceS. Wang, J. Xu, W. Wang, G. N. Wang, R. Rastak, F. Molina- Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S. K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. Tok, Z. Bao, Nature 2018, 555, 83.
dc.identifier.citedreferenceH. Sun, W. Tian, F. Cao, J. Xiong, L. Li, Adv. Mater. 2018, 30, 1706986.
dc.identifier.citedreferenceD. Xiang, C. Han, Z. Hu, B. Lei, Y. Liu, L. Wang, W. P. Hu, W. Chen, Small 2015, 11, 4829.
dc.identifier.citedreferenceY. Chen, C. Wang, G. Chen, Y. Li, C. Liu, Nano Energy 2015, 11, 533.
dc.identifier.citedreferenceC. Zhou, S. Raju, B. Li, M. Chan, Y. Chai, C. Y. Yang, Adv. Funct. Mater. 2018, 28, 1802954.
dc.identifier.citedreferenceW. Tian, Y. Wang, L. Chen, L. Li, Small 2017, 13, 1701848.
dc.identifier.citedreferenceL. Su, W. Yang, J. Cai, H. Chen, X. Fang, Small 2017, 13, 1701687.
dc.identifier.citedreferenceJ. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, E. Xie, Nanoscale 2016, 8, 50.
dc.identifier.citedreferenceZ. Xie, C. Xing, W. Huang, T. Fan, Z. Li, J. Zhao, Y. Xiang, Z. Guo, J. Li, Z. Yang, B. Dong, J. Qu, D. Fan, H. Zhang, Adv. Funct. Mater. 2018, 28, 1705833.
dc.identifier.citedreferenceD. Li, S. Hao, G. Xing, Y. Li, X. Li, L. Fan, S. Yang, J. Am. Chem. Soc. 2019, 141, 3480.
dc.identifier.citedreferenceC. Xie, X. Lu, X. Tong, Z. Zhang, F. Liang, L. Liang, L. Luo, Y. Wu, Adv. Funct. Mater. 2019, 29, 1806006.
dc.identifier.citedreferenceX. Hou, H. Sun, S. Long, G. S. Tompa, T. Salagaj, Y. Qin, Z. Zhang, P. Tan, S. Yu, M. Liu, IEEE Electron Device Lett. 2019, 40, 1483.
dc.identifier.citedreferenceD. Zhang, W. Zheng, R. Lin, Y. Li, F. Huang, Adv. Funct. Mater. 2019, 29, 1900935.
dc.identifier.citedreferenceM. Kneissl, T. Seong, J. Han, H. Amano, Nat. Photonics 2019, 13, 233.
dc.identifier.citedreferenceC. Z. Ning, L. Dou, P. Yang, Nat. Rev. Mater. 2017, 2, 17070.
dc.identifier.citedreferenceM. Gratzel, Nature 2001, 414, 338.
dc.identifier.citedreferenceK. Sivula, R. Van De Krol, Nat. Rev. Mater. 2016, 1, 15010.
dc.identifier.citedreferenceX. Ren, Z. Li, Z. Huang, D. Sang, H. Qiao, X. Qi, J. Li, J. Zhong, H. Zhang, Adv. Funct. Mater. 2017, 27, 1606834.
dc.identifier.citedreferenceZ. Li, H. Qiao, Z. Guo, X. Ren, Z. Huang, X. Qi, S. C. Dhanabalan, J. S. Ponraj, D. Zhang, J. Li, J. Zhao, J. Zhong, H. Zhang, Adv. Funct. Mater. 2018, 28, 1705237.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.