Show simple item record

Ecosystem engineering in the Quaternary of the West Coast of South Africa

dc.contributor.authorBraun, David R.
dc.contributor.authorFaith, John Tyler
dc.contributor.authorDouglass, Matthew J.
dc.contributor.authorDavies, Benjamin
dc.contributor.authorPower, Mitchel J.
dc.contributor.authorAldeias, Vera
dc.contributor.authorConard, Nicholas J.
dc.contributor.authorCutts, Russell
dc.contributor.authorDeSantis, Larisa R. G.
dc.contributor.authorDupont, Lydie M.
dc.contributor.authorEsteban, Irene
dc.contributor.authorKandel, Andrew W.
dc.contributor.authorLevin, Naomi E.
dc.contributor.authorLuyt, Julie
dc.contributor.authorParkington, John
dc.contributor.authorPickering, Robyn
dc.contributor.authorQuick, Lynne
dc.contributor.authorSealy, Judith
dc.contributor.authorStynder, Deano
dc.date.accessioned2021-03-02T21:43:58Z
dc.date.available2022-02-02 16:43:56en
dc.date.available2021-03-02T21:43:58Z
dc.date.issued2021-01
dc.identifier.citationBraun, David R.; Faith, John Tyler; Douglass, Matthew J.; Davies, Benjamin; Power, Mitchel J.; Aldeias, Vera; Conard, Nicholas J.; Cutts, Russell; DeSantis, Larisa R. G.; Dupont, Lydie M.; Esteban, Irene; Kandel, Andrew W.; Levin, Naomi E.; Luyt, Julie; Parkington, John; Pickering, Robyn; Quick, Lynne; Sealy, Judith; Stynder, Deano (2021). "Ecosystem engineering in the Quaternary of the West Coast of South Africa." Evolutionary Anthropology: Issues, News, and Reviews 30(1): 50-62.
dc.identifier.issn1060-1538
dc.identifier.issn1520-6505
dc.identifier.urihttps://hdl.handle.net/2027.42/166372
dc.description.abstractDespite advances in our understanding of the geographic and temporal scope of the Paleolithic record, we know remarkably little about the evolutionary and ecological consequences of changes in human behavior. Recent inquiries suggest that human evolution reflects a long history of interconnections between the behavior of humans and their surrounding ecosystems (e.g., niche construction). Developing expectations to identify such phenomena is remarkably difficult because it requires understanding the multi‐generational impacts of changes in behavior. These long‐term dynamics require insights into the emergent phenomena that alter selective pressures over longer time periods which are not possible to observe, and are also not intuitive based on observations derived from ethnographic time scales. Generative models show promise for probing these potentially unexpected consequences of human‐environment interaction. Changes in the uses of landscapes may have long term implications for the environments that hominins occupied. We explore other potential proxies of behavior and examine how modeling may provide expectations for a variety of phenomena.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherniche construction
dc.subject.otherpaleoecology
dc.subject.otherSouth Africa
dc.subject.otherevolution
dc.subject.othergenerative modeling
dc.subject.otherarchaeology
dc.titleEcosystem engineering in the Quaternary of the West Coast of South Africa
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAnthropology
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166372/1/evan21886.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166372/2/evan21886_am.pdf
dc.identifier.doi10.1002/evan.21886
dc.identifier.sourceEvolutionary Anthropology: Issues, News, and Reviews
dc.identifier.citedreferenceVogel JC, Ful A, Ellis RP. 1978. Geographical distribution of Kranz grasses in South Africa. South Afr J Sci 74: 209 – 215.
dc.identifier.citedreferenceFaith JT, Rowan J, Du A, et al. 2018. Plio‐Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362: 938 – 941.
dc.identifier.citedreferenceStephens L, Fuller D, Boivin N, et al. 2019. Archaeological assessment reveals Earth’s early transformation through land use. Science 365: 897 – 902.
dc.identifier.citedreferenceLake MW. 2015. Explaining the past with ABM: on modelling philosophy. In: Wurzer G, Kowarik K, Reschreiter H, editors. Agent‐based modeling and simulation in archaeology, New York: Springer. p 3 – 35.
dc.identifier.citedreferenceGifford‐Gonzalez D. 1991. Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. J Anthropol Archaeol 10: 215 – 254.
dc.identifier.citedreferenceServedio MR, Brandvain Y, Dhole S, et al. 2014. Not just a theory—the utility of mathematical models in evolutionary biology. PLoS Biol 12: e1002017.
dc.identifier.citedreferencePremo LS. 2007. Exploratory agent‐based models: towards an experimental ethnoarchaeology. In: Clark JT, Hagermeister EM, editors. Digital discovery: exploring new frontiers in human heritage. CAA 2006, Budapest: Archaeolingua Press. p 29 – 36.
dc.identifier.citedreferenceLuyt J, Hare VJ, Sealy J. 2019. The relationship of ungulate δ13C and environment in the temperate biome of southern Africa, and its palaeoclimatic application. Palaeogeogr Palaeoclimatol Palaeoecol 514: 282 – 291.
dc.identifier.citedreferenceLehmann SB, Braun DR, Dennis KJ, et al. 2016. Stable isotopic composition of fossil mammal teeth and environmental change in southwestern South Africa during the Pliocene and Pleistocene. Palaeogeogr Palaeoclimatol Palaeoecol 457: 396 – 408.
dc.identifier.citedreferenceUngar PS, Merceron G, Scott RS. 2007. Dental microwear texture analysis of Varswater bovids and early Pliocene paleoenvironments of Langebaanweg, Western Cape Province, South Africa. J Mamm Evol 14: 163 – 181.
dc.identifier.citedreferenceChase BM, Meadows ME. 2007. Late quaternary dynamics of southern Africa’s winter rainfall zone. Earth‐Sci Rev 84: 103 – 138.
dc.identifier.citedreferenceShi N, Schneider R, Beug H‐J, Dupont LM. 2001. Southeast trade wind variations during the last 135 kyr: evidence from pollen spectra in eastern South Atlantic sediments. Earth and Planetary Science Letters 187:311–321.
dc.identifier.citedreferenceScherjon F, Bakels C, MacDonald K, et al. 2015. Burning the land: an ethnographic study of off‐site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr Anthropol 56: 299 – 326.
dc.identifier.citedreferenceMentzer SM. 2014. Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. J Archaeol Method Theory 21: 616 – 668.
dc.identifier.citedreferenceBrittingham A, Hren MT, Hartman G, et al. 2019. Geochemical evidence for the control of fire by middle palaeolithic Hominins. Sci Rep 9: 1 – 7.
dc.identifier.citedreferenceDouglass MJ, Holdaway SJ, Fanning PC, et al. 2008. An assessment and archaeological application of cortex measurement in lithic assemblages. Am Antiq 73: 513 – 526.
dc.identifier.citedreferenceKandel AW, Bolus M, Bretzke K, et al. 2016. Increasing behavioral flexibility? An integrative macro‐scale approach to understanding the Middle Stone Age of southern Africa. J Archaeol Method Theory 23: 623 – 668.
dc.identifier.citedreferenceDietl H, Kandel AW, Conard NJ. 2005. Middle stone age settlement and land use at the open‐air sites of Geelbek and Anyskop, South Africa. J Afr Archaeol 3: 233 – 244.
dc.identifier.citedreferenceFuchs M, Kandel AW, Conard NJ, et al. 2008. Geoarchaeological and chronostratigraphical investigations of open‐air sites in the Geelbek Dunes, South Africa. Geoarchaeology 23: 425 – 449.
dc.identifier.citedreferenceKandel AW, Felix‐Henningsen P, Conard NJ. 2003. An overview of the spatial archaeology of the Geelbek Dunes, Western Cape, South Africa. In: Füleky G, editor. Papers of the 1st International Conference on Archaeology and Soils, Oxford: British Archaeological Reports. p 37 – 44.
dc.identifier.citedreferenceKlein RG, Cruz‐Uribe K. 1991. The bovids from Elandsfontein, South Africa, and their implications for the age, palaeoenvironment, and origins of the site. Afr Archaeol Rev 9: 21 – 79.
dc.identifier.citedreferenceSinger R, Wymer J. 1968. Archaeological investigations at the Saldanha skull site in South Africa. S Afr Archaeol Bull 23: 63 – 74.
dc.identifier.citedreferenceButzer KW. 1973. Re‐evaluation of the geology of the Elandsfontein (Hopefield) site, south‐western cape, South Africa. S Afr J Sci 69: 234 – 238.
dc.identifier.citedreferenceKlein RG. 1978. The fauna and overall interpretation of the “Cutting 10” Acheulean site at Elandsfontein (Hopefield), southwestern Cape Province, South Africa. Quat Res 10: 69 – 83.
dc.identifier.citedreferenceForrest FL, Stynder DD, Bishop LC, et al. 2018. Zooarchaeological reconstruction of newly excavated middle Pleistocene deposits from Elandsfontein, South Africa. J Archaeol Sci Rep 17: 19 – 29.
dc.identifier.citedreferenceLehmann SB, Levin NE, Braun DR, et al. 2018. Environmental and ecological implications of strontium isotope ratios in mid‐Pleistocene fossil teeth from Elandsfontein, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 490: 84 – 94.
dc.identifier.citedreferencePatterson DB, Lehmann SB, Matthews T, et al. 2016. Stable isotope ecology of Cape dune mole‐rats ( Bathyergus suillus ) from Elandsfontein, South Africa: implications for C4 vegetation and hominin paleobiology in the Cape Floral Region. Palaeogeogr Palaeoclimatol Palaeoecol 457: 409 – 421.
dc.identifier.citedreferenceFeblot‐Augustins J. 1990. Exploitation des matières premières dans l’Acheuléen d’Afrique: perspectives comportementales. Paleo 2: 27 – 42.
dc.identifier.citedreferenceBarton CM, Riel‐Salvatore J. 2014. The formation of lithic assemblages. J Archaeol Sci 46: 334 – 352.
dc.identifier.citedreferencePremo LS. 2015. Mobility and cultural diversity in central‐place foragers: implications for the emergence of modern human behavior. In: Learning Strategies and Cultural Evolution during the Palaeolithic. Japan: Springer. p 45 – 65.
dc.identifier.citedreferenceHoldaway S, Douglass M. 2012. A twenty‐first century archaeology of stone artifacts. J Archaeol Method Theory 19: 101 – 131.
dc.identifier.citedreferenceGrove M. 2009. Hunter–gatherer movement patterns: causes and constraints. J Anthropol Archaeol 28: 222 – 233.
dc.identifier.citedreferenceKuhn SL, Raichlen DA, Clark AE. 2016. What moves us? How mobility and movement are at the center of human evolution. Evol Anthropol 25: 86 – 97.
dc.identifier.citedreferenceBlumenschine RJ, Masao FT, Tactikos JC, et al. 2008. Effects of distance from stone source on landscape‐scale variation in Oldowan artifact assemblages in the Paleo‐Olduvai Basin, Tanzania. J Archaeol Sci 35: 76 – 86.
dc.identifier.citedreferenceBinford LR. 1979. Organization and formation processes: looking at curated technologies. J Anthropol Res 35: 255 – 273.
dc.identifier.citedreferenceBowman DMJS, Balch JK, Artaxo P, et al. 2009. Fire in the earth system. Science 324: 481 – 484.
dc.identifier.citedreferenceBush MB, Hansen BCS, Rodbell DT, et al. 2005. A 17 000‐year history of Andean climate and vegetation change from Laguna de Chochos, Peru. J Quat Sci 20: 703 – 714.
dc.identifier.citedreferenceKraaij T. 2010. Changing the fire management regime in the renosterveld and lowland fynbos of the Bontebok National Park. S Afr J Bot 76: 550 – 557.
dc.identifier.citedreferenceDaniau A‐L, Sanchez Goni MF, Martinez P, et al. 2013. Orbital‐scale climate forcing of grassland burning in southern Africa. Proc Natl Acad Sci USA 110: 5069 – 5073.
dc.identifier.citedreferenceLasslop G, Kloster S. 2017. Human impact on wildfires varies between regions and with vegetation productivity. Environ Res Lett 12: 115011.
dc.identifier.citedreferencePotts R. 1998. Environmental hypotheses of hominin evolution. Am J Phys Anthropol 107: 93 – 136.
dc.identifier.citedreferenceKingston JD. 2007. Shifting adaptive landscapes: progress and challenges in reconstructing early hominid environments. Am J Phys Anthropol 134: 20 – 58.
dc.identifier.citedreferenceBoivin NL, Zeder MA, Fuller DQ, et al. 2016. Ecological consequences of human niche construction: examining long‐term anthropogenic shaping of global species distributions. Proc Natl Acad Sci USA 113: 6388 – 6396.
dc.identifier.citedreferenceSmith BD, Zeder MA. 2013. The onset of the anthropocene. Anthropocene 4: 8 – 13.
dc.identifier.citedreferenceBarnosky AD, Hadly EA, Gonzalez P, et al. 2017. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355: eaah4787.
dc.identifier.citedreferenceLaland KN, O’Brien MJ. 2010. Niche construction theory and archaeology. J Archaeol Method Theory 17: 1 – 20.
dc.identifier.citedreferenceBird D, O’Connell JF. 2006. Behavioral ecology and archaeology. J Archaeol Res 14: 143 – 188.
dc.identifier.citedreferencePotts R. 1998. Variability selection in hominid evolution. Evol Anthropol 7: 81 – 96.
dc.identifier.citedreferenceFoley R, Lahr MM. 2003. On stony ground: lithic technology, human evolution, and the emergence of culture. Evol Anthropol 12: 109 – 122.
dc.identifier.citedreferenceGrove M. 2011. Change and variability in Plio‐Pleistocene climates: modelling the hominin response. J Archaeol Sci 38: 3038 – 3047.
dc.identifier.citedreferenceBobe R, Carvalho S. 2019. Hominin diversity and high environmental variability in the Okote member, Koobi Fora formation, Kenya. J Hum Evol 126: 91 – 105.
dc.identifier.citedreferenceBlome MW, Cohen AS, Tryon CA, et al. 2012. The environmental context for the origins of modern human diversity: a synthesis of regional variability in African climate 150,000–30,000 years ago. J Hum Evol 62: 563 – 592.
dc.identifier.citedreferenceRezek Z, Holdaway SJ, Olszewski DI, et al. 2020. Aggregates, formational emergence, and the focus on practice in stone artifact archaeology. J Archaeol Method Theory 1 – 42. http://dx.doi.org/10.1007/s10816-020-09445-y
dc.identifier.citedreferenceMarean CW, Anderson RJ, Bar‐Matthews M, et al. 2015. A new research strategy for integrating studies of paleoclimate, paleoenvironment, and paleoanthropology. Evol Anthropol 24: 62 – 72.
dc.identifier.citedreferenceBlumenschine RJ, Masao F. 1991. Living sites at Olduvai Gorge, Tanzania? Preliminary landscape archaeology results in the basal bed II lake margin zone. J Hum Evol 21: 451 – 462.
dc.identifier.citedreferencePresnyakova D, Braun DR, Conard NJ, et al. 2016. Site fragmentation, hominin mobility and LCT variability reflected in the early Acheulean record of the Okote member, at Koobi Fora, Kenya. J Hum Evol 125: 159 – 180.
dc.identifier.citedreferenceBar‐Matthews M, Marean CW, Jacobs Z, et al. 2010. A high resolution and continuous isotopic speleothem record of paleoclimate and paleoenvironment from 90 to 53 ka from pinnacle point on the south coast of South Africa. Quat Sci Rev 29: 2131 – 2145.
dc.identifier.citedreferenceBehrensmeyer AK, Kidwell SM, Gastaldo RA. 2000. Taphonomy and paleobiology. Paleobiology 26: 103 – 147.
dc.identifier.citedreferenceBailey G. 2007. Time perspectives, palimpsests and the archaeology of time. J Anthropol Archaeol 26: 198 – 223.
dc.identifier.citedreferencePerry G, Wainwright J, Etherington TR, et al. 2016. Experimental simulation: using generative modeling and palaeoecological data to understand human‐environment interactions. Front Ecol Evol 4: 109.
dc.identifier.citedreferenceDavies B, Holdaway SJ, Fanning PC. 2018. Modeling relationships between space, movement, and lithic geometric attributes. Am Antiq 83: 444 – 461.
dc.identifier.citedreferenceCowling RM, Esler KJ, Midgley GF, et al. 1994. Plant functional diversity, species diversity and climate in arid and semi‐arid southern Africa. J Arid Environ 27: 141 – 158.
dc.identifier.citedreferenceEllis EC. 2015. Ecology in an anthropogenic biosphere. Ecol Monogr 85: 287 – 331.
dc.identifier.citedreferenceRiel‐Salvatore J. 2010. A niche construction perspective on the middle–upper paleolithic transition in Italy. J Archaeol Method Theory 17: 323 – 355.
dc.identifier.citedreferenceManning J, Goldblatt P. 2012. Plants of the greater cape floristic region. In: 1: The Core Cape flora, Cape Town: South African National Biodiversity Institute.
dc.identifier.citedreferenceLinder HP. 2003. The radiation of the Cape flora, southern Africa. Biological Reviews 78: 597 – 638.
dc.identifier.citedreferenceVan Wilgen BW, Richardson DM, Seydack AHW. 1994. Managing fynbos for biodiversity: constraints and options in a fire‐prone environment. S Afr J Sci 90: 322 – 328.
dc.identifier.citedreferenceSkead CJ, Boshoff AF, Kerley GIH, et al. 2011. Historical incidence of the larger land mammals in the broader Northern and Western Cape, Port Elizabeth: Centre for African Conservation Ecology, Nelson Mandela Metropolitan University.
dc.identifier.citedreferenceCowling RM, Lombard AT. 2002. Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8: 163 – 179.
dc.identifier.citedreferenceCowling RM, Rundel PW, Lamont BB, et al. 1996. Plant diversity in mediterranean‐climate regions. Trends Ecol Evol 11: 362 – 366.
dc.identifier.citedreferenceBraun DR, Levin NE, Stynder D, et al. 2013. Mid‐Pleistocene Hominin occupation at Elandsfontein, Western Cape, South Africa. Quat Sci Rev 82: 145 – 166.
dc.identifier.citedreferenceThom H. 1952. The Journal of Jan van Riebeeck, Cape Town: Balkema.
dc.identifier.citedreferenceBaxter AJ, Meadows ME. 1994. Palynological evidence for the impact of colonial settlement within lowland fynbos: a high‐resolution study from the Verlorenvlei, southwestern Cape Province, South Africa. Hist Biol 9: 61 – 70.
dc.identifier.citedreferenceJerardino A, Marean CW. 2010. Shellfish gathering, marine paleoecology and modern human behavior: perspectives from cave PP13B, Pinnacle Point, South Africa. J Hum Evol 59: 412 – 424.
dc.identifier.citedreferenceKlein RG, Avery G, Cruz‐Uribe K, et al. 2004. The Ysterfontein 1 middle stone age site, South Africa, and early human exploitation of coastal resources. Proc Natl Acad Sci USA 101: 5708 – 5715.
dc.identifier.citedreferenceKlein RG. 1984. Mammalian extinctions and stone age people in Africa. In: Martin PS, Klein RG, editors. Quaternary extinctions, Tucson, Arizona: University of Arizona Press. p 553 – 573.
dc.identifier.citedreferenceKlein RG, Avery G, Cruz‐Uribe K, et al. 2007. The mammalian fauna associated with an archaic hominin skullcap and later Acheulean artifacts at Elandsfontein, Western Cape Province. S Afr J Hum Evol 52: 164 – 186.
dc.identifier.citedreferenceKlein RG. 1983. Palaeoenvironmental implications of quaternary large mammals in the fynbos biome. S Afr Natl Sci Program Rep 75: 116 – 138.
dc.identifier.citedreferenceHare V, Sealy J. 2013. Middle Pleistocene dynamics of southern Africa’s winter rainfall zone from δ13C and δ18O values of Hoedjiespunt faunal enamel. Palaeogeogr Palaeoclimatol Palaeoecol 374: 72 – 80.
dc.identifier.citedreferenceBrown KS, Marean CW, Herries AIR, et al. 2009. Fire as an engineering tool of early modern humans. Science 325: 859 – 862.
dc.identifier.citedreferenceBerna F, Goldberg P, Horwitz LK, et al. 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proc Natl Acad Sci USA 109: 1215 – 1220.
dc.identifier.citedreferenceBliege Bird R, Bird DW, Codding BF, et al. 2008. The “fire stick farming” hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. Proc Natl Acad Sci USA 105: 14796 – 14801.
dc.identifier.citedreferenceSteele TE, Klein RG. 2009. Late Pleistocene subsistence strategies and resource intensification in Africa. In: The evolution of Hominin diets, Netherlands: Springer. p 113 – 126.
dc.identifier.citedreferenceStiner MC, Kuhn SL. 2016. Are we missing the “sweet spot” between optimality theory and niche construction theory in archaeology? J Anthropol Archaeol 44: 177 – 184.
dc.identifier.citedreferenceMeadows ME, Baxter AJ. 1999. Late quaternary palaeoenvironments of the southwestern Cape, South Africa: a regional synthesis. Quat Int 57–8: 193 – 206.
dc.identifier.citedreferenceBarnola J‐M, Raynaud D, Korotkevich YS, et al. 1987. Vostok ice core provides 160,000‐year record of atmospheric CO2. Nature 329: 408 – 414.
dc.identifier.citedreferenceMabbutt JA. 1956. The physiography and surface geology of the Hopefield fossil site. Trans R Soc S Afr 35: 21 – 58.
dc.identifier.citedreferenceKlein RG. 2000. The earlier stone age of southern Africa. S Afr Archaeol Bull 55: 107 – 122.
dc.identifier.citedreferenceGrove M. 2011. Speciation, diversity, and mode 1 technologies: the impact of variability selection. J Hum Evol 61: 306 – 319.
dc.identifier.citedreferenceMorgan TJ. 2016. Testing the cognitive and cultural niche theories of human evolution. Curr Anthropol 57: 370 – 377.
dc.identifier.citedreferenceDominguez‐Rodrigo M. 2009. Are all Oldowan sites palimpsests? If so, what can they tell us about hominid carnivory? In: Hovers E, Braun DR, editors. Interdisciplinary approaches to the Oldowan, Dordrecht: Springer. p 129 – 147.
dc.identifier.citedreferenceBraun D, Harris JW. 2009. Plio‐Pleistocene technological variation: a view from the KBS Mbr., Koobi Fora formation. In: Toth N, Schick K, editors. The cutting edge: new approaches to the archaeology of human origins, Gosport: Stone Age Institute Press. p 17 – 32.
dc.identifier.citedreferencePotts R, Behrensmeyer AK, Ditchfield P. 1999. Paleolandscape variation and early Pleistocene hominid activities: members 1 and 7, Olorgesailie formation, Kenya. J Hum Evol 37: 747 – 788.
dc.identifier.citedreferenceRežek Ž, Dibble HL, McPherron SP, et al. 2018. Two million years of flaking stone and the evolutionary efficiency of stone tool technology. Nat Ecol Evol 2: 628 – 633.
dc.identifier.citedreferenceKuhn SL. 1994. A formal approach to the design and assembly of mobile toolkits. Am Antiq 59: 426 – 442.
dc.identifier.citedreferenceHoldaway SJ, Fanning PC, Rhodes EJ, et al. 2010. Human response to Palaeoenvironmental change and the question of temporal scale. Palaeogeogr Palaeoclimatol Palaeoecol 292: 192 – 200.
dc.identifier.citedreferenceZeder MA. 2012. The broad spectrum revolution at 40: resource diversity, intensification, and an alternative to optimal foraging explanations. J Anthropol Archaeol 31: 241 – 264.
dc.identifier.citedreferenceOdling‐Smee J. 2007. Niche inheritance: a possible basis for classifying multiple inheritance systems in evolution. Biol Theory 2: 276 – 289.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.