Show simple item record

Enabling 6C Fast Charging of Li- Ion Batteries with Graphite/Hard Carbon Hybrid Anodes

dc.contributor.authorChen, Kuan‐hung
dc.contributor.authorGoel, Vishwas
dc.contributor.authorNamkoong, Min Ji
dc.contributor.authorWied, Markus
dc.contributor.authorMüller, Simon
dc.contributor.authorWood, Vanessa
dc.contributor.authorSakamoto, Jeff
dc.contributor.authorThornton, Katsuyo
dc.contributor.authorDasgupta, Neil P.
dc.date.accessioned2021-03-02T21:44:02Z
dc.date.available2022-03-02 16:43:59en
dc.date.available2021-03-02T21:44:02Z
dc.date.issued2021-02
dc.identifier.citationChen, Kuan‐hung ; Goel, Vishwas; Namkoong, Min Ji; Wied, Markus; Müller, Simon ; Wood, Vanessa; Sakamoto, Jeff; Thornton, Katsuyo; Dasgupta, Neil P. (2021). "Enabling 6C Fast Charging of Li- Ion Batteries with Graphite/Hard Carbon Hybrid Anodes." Advanced Energy Materials 11(5): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/166373
dc.description.abstractLi- ion batteries that can simultaneously achieve high- energy density and fast charging are essential for electric vehicles. Graphite anodes enable a high- energy density, but suffer from an inhomogeneous reaction current and irreversible Li plating during fast charging. In contrast, hard carbon exhibits superior rate performance but lower energy density owing to its lower initial coulombic efficiency and higher average voltage. In this work, these tradeoffs are overcome by fabricating hybrid anodes with uniform mixtures of graphite and hard carbon, using industrially- relevant multi- layer pouch cells (>1 Ah) and electrode loadings (3 mAh cm- 2). By controlling the graphite/hard carbon ratio, this study shows that battery performance can be systematically tuned to achieve both high- energy density and efficient fast charging. Pouch cells with optimized hybrid anodes retain 87% and 82% of their initial specific energy after 500 cycles of 4C and 6C fast- charge cycling, respectively. This is significantly higher than the 61% and 48% specific energy retention with graphite anodes under the same conditions. The enhanced performance is attributed to improved homogeneity of the reaction current throughout the hybrid anode, which is supported by continuum- scale modeling. This process is directly compatible with existing roll- to- roll battery manufacturing, representing a scalable pathway to fast charging.Hybrid anodes fabricated by mixing graphite and hard carbon are shown to achieve fast charging Li- ion batteries with high- energy densities, using industrially relevant multi- layer pouch cells (>1 Ah). By tuning the blend ratio of graphite/hard carbon, pouch cells with 180 Wh kg- 1 energy density and 87%/82% energy retention after 500 cycles of 4C/6C fast- charge cycling are achieved.
dc.publisherWiley Periodicals, Inc.
dc.publisherIdaho National Lab. (INL)
dc.subject.otherbatteries
dc.subject.otherfast charging
dc.subject.othergraphite
dc.subject.otherlithium plating
dc.subject.othermodeling
dc.titleEnabling 6C Fast Charging of Li- Ion Batteries with Graphite/Hard Carbon Hybrid Anodes
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166373/1/aenm202003336.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166373/2/aenm202003336-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166373/3/aenm202003336_am.pdf
dc.identifier.doi10.1002/aenm.202003336
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceV. Wood, Nat. Rev. Mater. 2018, 3, 293.
dc.identifier.citedreferenceT. Horiba, T. Maeshima, T. Matsumura, M. Koseki, J. Arai, Y. Muranaka, J. Power Sources 2005, 146, 107.
dc.identifier.citedreferenceY. Nishi, Electrochem. Soc. Interface 2016, 25, 71.
dc.identifier.citedreferenceC. Ge, J. Wang, Z. Fan, J. Zhang, Y. Qiao, J. Wang, L. Ling, RSC Adv. 2018, 8, 34682.
dc.identifier.citedreferenceY. G. Lim, J. W. Park, M. S. Park, D. Byun, J. S. Yu, Y. N. Jo, Y. J. Kim, Bull. Korean Chem. Soc. 2015, 36, 150.
dc.identifier.citedreferenceK. J. Kim, T. S. Lee, H. G. Kim, S. H. Lim, S. M. Lee, Electrochim. Acta 2014, 135, 27.
dc.identifier.citedreferenceK. Yanagida, A. Yanai, Y. Kida, A. Funahashi, T. Nohma, I. Yonezu, J. Electrochem. Soc. 2002, 149, A804.
dc.identifier.citedreferenceA. Kinoshita, K. Yanagida, A. Yanai, Y. Kida, A. Funahashi, T. Nohma, I. Yonezu, J. Power Sources 2001, 102, 283.
dc.identifier.citedreferenceR. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267.
dc.identifier.citedreferenceS. J. Harris, A. Timmons, D. R. Baker, C. Monroe, Chem. Phys. Lett. 2010, 485, 265.
dc.identifier.citedreferenceY. Qi, S. J. Harris, J. Electrochem. Soc. 2010, 157, A741.
dc.identifier.citedreferenceS. Müller, J. Eller, M. Ebner, C. Burns, J. Dahn, V. Wood, J. Electrochem. Soc. 2018, 165, A339.
dc.identifier.citedreferenceP. Pietsch, M. Ebner, F. Marone, M. Stampanoni, V. Wood, Sustainable Energy Fuels 2018, 2, 598.
dc.identifier.citedreferenceD. Kehrwald, P. R. Shearing, N. P. Brandon, P. K. Sinha, S. J. Harris, J. Electrochem. Soc. 2011, 158, A1393.
dc.identifier.citedreferenceG. Harauz, M. Van Heel, Optik 1986, 73, 146.
dc.identifier.citedreferenceK. G. Gallagher, D. W. Dees, A. N. Jansen, D. P. Abraham, S.- H. Kang, J. Electrochem. Soc. 2012, 159, A2029.
dc.identifier.citedreferenceJ. R. Dahn, Phys. Rev. B 1991, 44, 9170.
dc.identifier.citedreferenceJ. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, R. Klöpsch, B. Vortmann, H. Hahn, S. Nowak, M. Amereller, A. C. Gentschev, P. Lamp, M. Winter, Phys. Chem. Chem. Phys. 2016, 18, 3956.
dc.identifier.citedreferenceH. Zhou, F. Xin, B. Pei, M. S. Whittingham, ACS Energy Lett. 2019, 4, 1902.
dc.identifier.citedreferenceJ. P. Christophersen, Battery Test Manual For Electric Vehicles, Idaho National Lab. (INL), Idaho Falls, ID 2015.
dc.identifier.citedreferenceK.- H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, N. P. Dasgupta, J. Mater. Chem. A 2017, 5, 11671.
dc.identifier.citedreferenceJ. S. Newman, C. W. Tobias, J. Electrochem. Soc. 1962, 109, 1183.
dc.identifier.citedreferenceJ. Newman, W. Tiedemann, AIChE J. 1975, 21, 25.
dc.identifier.citedreferenceM. Doyle, J. Newman, J. Power Sources 1995, 54, 46.
dc.identifier.citedreferenceM.- T. F. Rodrigues, K. Kalaga, S. E. Trask, D. W. Dees, I. A. Shkrob, D. P. Abraham, J. Electrochem. Soc. 2019, 166, A996.
dc.identifier.citedreferenceQ. Liu, C. Du, B. Shen, P. Zuo, X. Cheng, Y. Ma, G. Yin, Y. Gao, RSC Adv. 2016, 6, 88683.
dc.identifier.citedreferenceD. Tewari, Z. Liu, P. B. Balbuena, P. P. Mukherjee, J. Phys. Chem. C 2018, 122, 21097.
dc.identifier.citedreferenceT. F. Fuller, M. Doyle, J. Newman, J. Electrochem. Soc. 1994, 141, 1.
dc.identifier.citedreferenceM. Doyle, T. F. Fuller, J. Newman, Electrochim. Acta 1994, 39, 2073.
dc.identifier.citedreferenceJ. E. Harlow, X. Ma, J. Li, E. Logan, Y. Liu, N. Zhang, L. Ma, S. L. Glazier, M. M. E. Cormier, M. Genovese, S. Buteau, A. Cameron, J. E. Stark, J. R. Dahn, J. Electrochem. Soc. 2019, 166, A3031.
dc.identifier.citedreferenceS. Ahmed, I. Bloom, A. N. Jansen, T. Tanim, E. J. Dufek, A. Pesaran, A. Burnham, R. B. Carlson, F. Dias, K. Hardy, M. Keyser, C. Kreuzer, A. Markel, A. Meintz, C. Michelbacher, M. Mohanpurkar, P. A. Nelson, D. C. Robertson, D. Scoffield, M. Shirk, T. Stephens, R. Vijayagopal, J. Zhang, J. Power Sources 2017, 367, 250.
dc.identifier.citedreferenceM. Keyser, A. Pesaran, Q. Li, S. Santhanagopalan, K. Smith, E. Wood, S. Ahmed, I. Bloom, E. Dufek, M. Shirk, A. Meintz, C. Kreuzer, C. Michelbacher, A. Burnham, T. Stephens, J. Francfort, B. Carlson, J. Zhang, R. Vijayagopal, K. Hardy, F. Dias, M. Mohanpurkar, D. Scoffield, A. N. Jansen, T. Tanim, A. Markel, J. Power Sources 2017, 367, 228.
dc.identifier.citedreferenceT. Waldmann, B. I. Hogg, M. Wohlfahrt- Mehrens, J. Power Sources 2018, 384, 107.
dc.identifier.citedreferenceM. Winter, B. Barnett, K. Xu, Chem. Rev. 2018, 118, 11433.
dc.identifier.citedreferenceX. Zeng, M. Li, D. Abd El- Hady, W. Alshitari, A. S. Al- Bogami, J. Lu, K. Amine, Adv. Energy Mater. 2019, 9, 1900161.
dc.identifier.citedreferenceC. Mao, M. Wood, L. David, S. J. An, Y. Sheng, Z. Du, H. M. Meyer, R. E. Ruther, D. L. Wood, J. Electrochem. Soc. 2018, 165, A1837.
dc.identifier.citedreferenceG. E. Blomgren, J. Electrochem. Soc. 2017, 164, A5019.
dc.identifier.citedreferenceW. Mai, A. M. Colclasure, K. Smith, J. Electrochem. Soc. 2020, 167, 080517.
dc.identifier.citedreferenceA. M. Colclasure, A. R. Dunlop, S. E. Trask, B. J. Polzin, A. N. Jansen, K. Smith, J. Electrochem. Soc. 2019, 166, A1412.
dc.identifier.citedreferenceA. M. Colclasure, T. R. Tanim, A. N. Jansen, S. E. Trask, A. R. Dunlop, B. J. Polzin, I. Bloom, D. Robertson, L. R. Flores, M. Evans, E. J. Dufek, K. Smith, Electrochim. Acta 2020, 337, 135854.
dc.identifier.citedreferenceV. P. Nemani, S. J. Harris, K. C. Smith, J. Electrochem. Soc. 2015, 162, A1415.
dc.identifier.citedreferenceS. J. Harris, P. Lu, J. Phys. Chem. C 2013, 117, 6481.
dc.identifier.citedreferenceK.- H. Chen, M. J. Namkoong, V. Goel, C. Yang, S. Kazemiabnavi, S. M. Mortuza, E. Kazyak, J. Mazumder, K. Thornton, J. Sakamoto, N. P. Dasgupta, J. Power Sources 2020, 471, 228475.
dc.identifier.citedreferenceZ. M. Konz, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2020, 5, 1750.
dc.identifier.citedreferenceE. J. McShane, E. J. McShane, A. M. Colclasure, D. E. Brown, D. E. Brown, Z. M. Konz, Z. M. Konz, K. Smith, B. D. McCloskey, B. D. McCloskey, ACS Energy Lett. 2020, 5, 2045.
dc.identifier.citedreferenceX. G. Yang, T. Liu, Y. Gao, S. Ge, Y. Leng, D. Wang, C.- Y. Y. Wang, Joule 2019, 3, 3002.
dc.identifier.citedreferenceK. G. Gallagher, S. E. Trask, C. Bauer, T. Woehrle, S. F. Lux, M. Tschech, P. Lamp, B. J. Polzin, S. Ha, B. Long, Q. Wu, W. Lu, D. W. Dees, A. N. Jansen, J. Electrochem. Soc. 2016, 163, A138.
dc.identifier.citedreferenceL. Li, R. M. Erb, J. Wang, J. Wang, Y. Chiang, Adv. Energy Mater. 2019, 9, 1802472.
dc.identifier.citedreferenceY. Kim, A. Drews, R. Chandrasekaran, T. Miller, J. Sakamoto, Ionics 2018, 24, 2935.
dc.identifier.citedreferenceE. R. Logan, J. R. Dahn, Trends Chem. 2020, 2, 354.
dc.identifier.citedreferenceD. S. Hall, A. Eldesoky, E. R. Logan, E. M. Tonita, X. Ma, J. R. Dahn, J. Electrochem. Soc. 2018, 165, A2365.
dc.identifier.citedreferenceK. M. Diederichsen, E. J. McShane, B. D. McCloskey, ACS Energy Lett. 2017, 2, 2563.
dc.identifier.citedreferenceK. R. Tallman, B. Zhang, L. Wang, S. Yan, K. Thompson, X. Tong, J. Thieme, A. Kiss, A. C. Marschilok, K. J. Takeuchi, D. C. Bock, E. S. Takeuchi, ACS Appl. Mater. Interfaces 2019, 11, 46864.
dc.identifier.citedreferenceK. Kubota, S. Shimadzu, N. Yabuuchi, S. Tominaka, S. Shiraishi, M. Abreu- Sepulveda, A. Manivannan, K. Gotoh, M. Fukunishi, M. Dahbi, S. Komaba, Chem. Mater. 2020, 32, 2961.
dc.identifier.citedreferenceE. Buiel, J. R. Dahn, Electrochim. Acta 1999, 45, 121.
dc.identifier.citedreferenceD. A. Stevens, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A803.
dc.identifier.citedreferenceE. Irisarri, A. Ponrouch, M. R. Palacin, J. Electrochem. Soc. 2015, 162, A2476.
dc.identifier.citedreferenceA. Shellikeri, V. Watson, D. Adams, E. E. Kalu, J. A. Read, T. R. Jow, J. S. Zheng, J. P. Zheng, J. Electrochem. Soc. 2017, 164, A3914.
dc.identifier.citedreferenceK. Guerin, A. Fevrier- Bouvier, S. Flandrois, B. Simon, P. Biensan, Electrochim. Acta 2000, 45, 1607.
dc.identifier.citedreferenceC. Matei Ghimbeu, J. Górka, V. Simone, L. Simonin, S. Martinet, C. Vix- Guterl, Nano Energy 2018, 44, 327.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.