Show simple item record

Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREO‐A

dc.contributor.authorAllen, R. C.
dc.contributor.authorHo, G. C.
dc.contributor.authorMason, G. M.
dc.contributor.authorLi, G.
dc.contributor.authorJian, L. K.
dc.contributor.authorVines, S. K.
dc.contributor.authorSchwadron, N. A.
dc.contributor.authorJoyce, C. J.
dc.contributor.authorBale, S. D.
dc.contributor.authorBonnell, J. W.
dc.contributor.authorCase, A. W.
dc.contributor.authorChristian, E. R.
dc.contributor.authorCohen, C. M. S.
dc.contributor.authorDesai, M. I.
dc.contributor.authorFilwett, R.
dc.contributor.authorGoetz, K.
dc.contributor.authorHarvey, P. R.
dc.contributor.authorHill, M. E.
dc.contributor.authorKasper, J. C.
dc.contributor.authorKorreck, K. E.
dc.contributor.authorLario, D.
dc.contributor.authorLarson, D.
dc.contributor.authorLivi, R.
dc.contributor.authorMacDowall, R. J.
dc.contributor.authorMalaspina, D. M.
dc.contributor.authorMcComas, D. J.
dc.contributor.authorMcNutt, R.
dc.contributor.authorMitchell, D. G.
dc.contributor.authorPaulson, K. W.
dc.contributor.authorPulupa, M.
dc.contributor.authorRaouafi, N.
dc.contributor.authorStevens, M. L.
dc.contributor.authorWhittlesey, P. L.
dc.contributor.authorWiedenbeck, M.
dc.date.accessioned2021-03-02T21:44:25Z
dc.date.available2022-03-02 16:44:22en
dc.date.available2021-03-02T21:44:25Z
dc.date.issued2021-02-16
dc.identifier.citationAllen, R. C.; Ho, G. C.; Mason, G. M.; Li, G.; Jian, L. K.; Vines, S. K.; Schwadron, N. A.; Joyce, C. J.; Bale, S. D.; Bonnell, J. W.; Case, A. W.; Christian, E. R.; Cohen, C. M. S.; Desai, M. I.; Filwett, R.; Goetz, K.; Harvey, P. R.; Hill, M. E.; Kasper, J. C.; Korreck, K. E.; Lario, D.; Larson, D.; Livi, R.; MacDowall, R. J.; Malaspina, D. M.; McComas, D. J.; McNutt, R.; Mitchell, D. G.; Paulson, K. W.; Pulupa, M.; Raouafi, N.; Stevens, M. L.; Whittlesey, P. L.; Wiedenbeck, M. (2021). "Radial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREO‐A." Geophysical Research Letters 48(3): n/a-n/a.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/166380
dc.description.abstractThe addition of Parker Solar Probe (PSP) to the Heliophysics System Observatory has allowed for the unprecedented ability to study Corotating Interaction Regions (CIRs) at multiple radial distances without significant temporal/longitudinal variations. On September 19, 2019, PSP observed a CIR at ∼0.5 au when it was nearly radially aligned with the Solar Terrestrial Relations Observatory‐Ahead (STEREO‐A) spacecraft at ∼1 au, allowing for an unambiguous assessment of the radial evolution of a single CIR. Bulk plasma and magnetic field signatures of the CIR evolve in a fashion characteristic to previous observations; however, the suprathermal ions are enhanced over a larger longitudinal range at PSP than at STEREO‐A, although at much lower intensities. The longitudinal spread appears to be largely a consequence of magnetic field line topology at CIRs between the compressed slow solar wind upstream and high‐speed stream following the CIR, underscoring the importance of the large‐scale topology of these structures.Key PointsA CIR was observed by PSP and STA when the spacecraft were near radially alignedThe plasma measurements suggest only radial evolution has occurred between observationsDifferences in fast and slow solar wind magnetic topology lead to a wider longitudinal extent of the suprathermal ion enhancement at PSP
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSTEREO
dc.subject.othersuprathermal ions
dc.subject.otherParker Solar Probe
dc.subject.othersolar wind
dc.subject.otherCIRs
dc.titleRadial Evolution of a CIR: Observations From a Nearly Radially Aligned Event Between Parker Solar Probe and STEREO‐A
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166380/1/grl61854_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166380/2/grl61854.pdf
dc.identifier.doi10.1029/2020GL091376
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMason, G. M., Desai, M. I., & Li, G. ( 2012 ). Solar cycle abundance variations in corotating interaction regions: Evidence for a suprathermal ion seed population. The Astrophysical Journal Letters, 748 ( 2 ), L31. https://doi.org/10.1088/2041-8205/748/2/L31
dc.identifier.citedreferenceBalogh, A., Bothmer, V., Crooker, N. U., Forsyth, R. J., Gloeckler, G., Hewish, A., et al. ( 1999 ). The solar origin of corotating interactions regions and their formation in the inner heliosphere. Space Science Reviews, 89, 141 – 178. https://doi.org/10.1023/A:1005245306874
dc.identifier.citedreferenceBarnes, C. W., & Simpson, J. A. ( 1976 ). Evidence for interplanetary acceleration of nucleons in corotating interaction regions. The Astrophysical Journal, 210, L91 – L96.
dc.identifier.citedreferenceBelcher, J. W., & Davis, L. ( 1971 ). Large‐amplitude Alfvén waves in the interplanetary medium, 2. Journal of Geophysical Research, 76, 3534 – 3563. https://doi.org/10.1029/JA076i016p03534
dc.identifier.citedreferenceCase, A. W., Kasper, J. C., Stevens, M. L., Korreck, K. E., Paulson, K., Daigneau, P., et al. ( 2020 ). The Solar Probe Cup on the Parker Solar Probe. The Astrophysical Journal Supplement, 246 ( 2 ), 43. https://doi.org/10.3847/1538-4365/ab5a7b
dc.identifier.citedreferenceChen, J. H., Schwadron, N. A., Möbius, E., & Gorby, M. ( 2015 ). Modeling interstellar pickup ion distributions in corotating interaction regions inside 1 au. Journal of Geophysical Research: Space Physics, 120, 9269 – 9280. https://doi.org/10.1002/2014JA020939
dc.identifier.citedreferenceChotoo, K., Schwadron, N. A., Mason, G. M., Zurbuchen, T. H., Gloeckler, G., Posner, A., et al. ( 2000 ). The suprathermal seed population for corotating interaction region ions at 1 au deduced from composition and spectra of H +, He ++, and He + observed on wind. Journal of Geophysical Research, 105, 23107 – 23122. https://doi.org/10.1029/1998JA000015
dc.identifier.citedreferenceCohen, C. M. S., Christian, E. R., Cummings, A. C., Davis, A. J., Desai,, M. I., Giacalone, J., et al. ( 2020 ). Energetic particle increases associated with stream interaction regions. The Astrophysical Journal Supplement, 246 ( 2 ), 20. https://doi.org/10.3847/1538-4365/ab4c38
dc.identifier.citedreferenceDesai, M. I., Mitchell, D. G., Szalay, J. R., Roelof, E. C., Giacalone, J., Hill, M. E., et al. ( 2020 ). Properties of suprathermal‐through‐energetic He ions associated with stream interaction regions observed over the Parker Solar Probe’s first two orbits. The Astrophysical Journal Supplement, 246 ( 2 ), 56. https://doi.org/10.3847/1538-4365/ab65ef
dc.identifier.citedreferenceEbert, R. W., Dayeh, M. A., Desai, M. I., & Mason, G. M. ( 2012 ). Corotating interaction region associated suprathermal helium enhancements at 1 au: Evidence for local acceleration at the compression region trailing edge. The Astrophysical Journal, 749, 73. https://doi.org/10.1088/0004-637X/749/1/73
dc.identifier.citedreferenceFilwett, R. J., Desai, M. I., Dayeh, M. A., & Broiles, T. W. ( 2017 ). Source population and acceleration location of suprathermal heavy ions in corotating interaction regions. The Astrophysical Journal, 838 ( 1 ), 23. https://doi.org/10.3847/1538-4357/aa5ca9
dc.identifier.citedreferenceFisk, L. A., & Lee, M. A. ( 1980 ). Shock acceleration of energetic particles in corotating interaction regions in the solar wind. The Astrophysical Journal, 237, 620 – 626. https://doi.org/10.1086/157907
dc.identifier.citedreferenceForsyth, R. J., & Marsch, E. ( 1999 ). Solar origin and interplanetary evolution of stream interfaces. Space Science Reviews, 89, 7 – 20. https://doi.org/10.1023/A:1005235626013
dc.identifier.citedreferenceFox, N. J., Velli, M. C., Bale, S. D., Decker, R., Driesman, A., Howard, R. A., et al. ( 2016 ). The Solar Probe Plus Mission: Humanity’s first visit to our star. Space Science Reviews, 204, 7 – 48. https://doi.org/10.1007/s11214-015-0211-6
dc.identifier.citedreferenceGalvin, A. B., Kistler, L. M., Popecki, M. A., Farrugia, C. J., Simunac, K. D. C., Ellis, L., et al. ( 2008 ). The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories. Space Science Reviews, 136 ( 1 ), 437 – 486. https://doi.org/10.1007/s11214-007-9296-x
dc.identifier.citedreferenceGiacalone, J., Jokipii, J. R., & Kóta, J. ( 2002 ). Particle acceleration in solar wind compression regions. The Astrophysical Journal, 573 ( 2 ), 845. https://doi.org/10.1086/340660
dc.identifier.citedreferenceGloeckler, G., & Geiss, J. ( 1998 ). Interstellar and inner source pickup ions observed with SWICS on Ulysses. Space Science Reviews, 85, 127 – 159. https://doi.org/10.1023/A:1005019628054
dc.identifier.citedreferenceGloeckler, G., Geiss, J., Roelof, R. C., Fisk, L. A., Ipavich, F. M., Ogilvie, K. W., et al. ( 1994 ). Acceleration of interstellar pickup ions in the disturbed solar wind observed by Ulysses. Journal of Geophysical Research, 99, 17637 – 17643. https://doi.org/10.1029/94JA01509
dc.identifier.citedreferenceHill, M. E., Mitchell, D. G., Andrews, G. B., Cooper, S. A., Gurnee, R. S., Hayes, J. R., et al. ( 2017 ). The mushroom: A half‐sky energetic ion and electron detector. Journal of Geophysical Research: Space Physics, 122, 1513 – 1530. https://doi.org/10.1002/2016JA022614
dc.identifier.citedreferenceHill, M. E, Mitchell, D. G., Allen, R. C., de Nolfo, G. A., Vourlidas, A., Brown, L. E., et al. ( 2020 ). Small, Low‐energy, Dispersive Solar Energetic Particle Events Observed by Parker Solar Probe. The Astrophysical Journal Supplement Series, 246 ( 2 ), 65. https://doi.org/10.3847/1538-4365/ab643d
dc.identifier.citedreferenceJian, L., Russell, C. T., Luhmann, J. G., & Skoug, R. M. ( 2006 ). Properties of stream interaction at one AU during 1995–2004. Solar Physics, 239, 337 – 392. https://doi.org/10.1007/s11207-006-0132-3
dc.identifier.citedreferenceJian, L. K., Luhmann, J. G., Russell, C. T., & Galvin, A. B. ( 2019 ). Solar Terrestrial Relations Observatory (STEREO) observations of stream interaction regions in 2007–2016: Relationship with heliospheric current sheets, solar cycle variations, and dual observations. Solar Physics, 294, 31. https://doi.org/10.1007/s11207-019-1416-8
dc.identifier.citedreferenceJian, L. K., Russell, C. T., & Luhmann, J. G. ( 2011 ). Comparing solar minimum 23/24 with historical solar wind records at 1 AU. Solar Physics, 274 ( 1 ), 321 – 344. https://doi.org/10.1007/s11207-011-9737-2
dc.identifier.citedreferenceJian, L. K., Russell, C. T., Luhmann, J. G., Skoug, R. M., & Steinberg, J. T. ( 2008 ). Stream interaction and interplanetary coronal mass ejections at 5.3 AU near the solar ecliptic plane. Solar Physics, 250, 375 – 402. https://doi.org/10.1007/s11207-008-9204-x
dc.identifier.citedreferenceJoyce, C. J., McComas, D. J., Christian, E. R., Schwadron, N. A., Wiedenbeck, M. E., McNutt, R., et al. ( 2020 ). Energetic particle observations from the Parker Solar Probe using combined energy spectra from the ISOIS instrument suite. Astrophysical Journal Supplement, 246, 41. https://doi.org/10.3847/1538-4365/ab5948
dc.identifier.citedreferenceKaiser, M. K., Kucera, T. A., Davila, J. M., Cyr, O. C. S., Guhathakurta, M., & Christian, E. ( 2008 ). The STEREO mission: An introduction. Space Science Reviews, 136, 5 – 16. https://doi.org/10.1007/s11214-007-9277-0
dc.identifier.citedreferenceKasper, J. C., Abiad, R., Austin, G., Balat‐Pichelin, M., Bale, S. D., Belcher, J. W., et al. ( 2016 ). Solar Wind Electrons Alphas and Protons (SWEAP) investigation: Design of the solar wind and coronal plasma instrument suite for Solar Probe Plus. Space Science Reviews, 204, 131 – 186. https://doi.org/10.1007/s11214-015-0206-3
dc.identifier.citedreferenceKivelson, M. G., & Russell, C. T. ( 1995 ). Introduction to space physics. New York, NY: Cambridge University Press. IBSN: 9780521457149.
dc.identifier.citedreferenceLepping, R. P., Acuna, M. H., Burlaga, L. F., Farrell, W. M., Slavin, J. A., Schatten, K. H., et al. ( 1995 ). The wind magnetic field investigation. Space Science Reviews, 71, 207 – 229. https://doi.org/10.1007/BF00751330
dc.identifier.citedreferenceLuhmann, J. G., Curtis, D. W., Schroeder, P., McCauley, J., Lin, R. P., Larson, D. E., et al. ( 2008 ). STEREO IMPACT investigation goals, measurements, and data products overview. Space Science Reviews, 136, 117 – 184. https://doi.org/10.1007/s11214-007-9170-x
dc.identifier.citedreferenceMason, G. M., Desai, M. I., Mall, U., Korth, A., Bucik, R., von Rosenvinge, T. T., et al. ( 2009 ). In situ observations if CIRs on STEREO, wind, and ACE during 2007‐2008. Solar Physics, 256, 393 – 408. https://doi.org/10.1007/s11207-009-9367-0
dc.identifier.citedreferenceMason, G. M., Leske, R. A., Desai, M. I., Cohen, C. M. S., Dwyer, J. R., Mazur, J. E., et al. ( 2008 ). Abundances and energy spectra of corotating interaction region heavy ions observed during solar cycle 23. The Astrophysical Journal, 678, 1458. https://doi.org/10.1086/533524
dc.identifier.citedreferenceMason, G. M., Mazur, J. E., Dwyer, J. R., Reames, D. V., & von Rosenvinge, T. T. ( 1997 ). New spectral and abundance features of interplanetary heavy ions in corotating interaction regions. Acta Pathologica Japonica, 486, L149. https://doi.org/10.1086/310845
dc.identifier.citedreferenceMason, G. M., & Sanderson, T. R. ( 1999 ). CIR associated energetic particles in the inner middle heliosphere. Space Science Reviews, 89, 77 – 90. https://doi.org/10.1023/A:1005216516443
dc.identifier.citedreferenceMcComas, D. J., Alexander, N., Angold, N., Bale, S., Beebe, C., Birdwell, B., et al. ( 2016 ). Integrated Science Investigation of the Sun (ISIS): Design of the energetic particle investigation. Space Science Reviews, 204, 187 – 256. https://doi.org/10.1007/s11214-014-0059-1
dc.identifier.citedreferenceMcComas, D. J., Christian, E. R., Cohen, C. M. S., Cummings, A. C., Davis, A. J., Desai, M. I., et al. ( 2019 ). Probing the energetic particle environment near the Sun. Nature, 576, 223 – 227. https://doi.org/10.1038/s41586-019-1811-1
dc.identifier.citedreferenceMüller‐Mellin, R., Böttcher, S., Falenski, J., Rode, E., Duvet, L., Sanderson, T., et al. ( 2008 ). The solar electron and proton telescope for the STEREO mission. Space Science Reviews, 136, 363 – 389. https://doi.org/10.1007/s11214-007-9204-4
dc.identifier.citedreferenceMurphy, N., Smith, E. J., & Schwadron, N. A. ( 2002 ). Stronly underwound magnetic fields in co‐rotating rarefaction regions: Observations and implications. Geophysical Research Letters, 29 ( 22 ), 2066. https://doi.org/10.1029/2002GL015164
dc.identifier.citedreferenceOgilvie, K. W., Chornay, D. J., Frizenreiter, R. J., Hunsaker, F., Keller, J., Lobell, J., et al. ( 1995 ). SWE: A comprehensive plasma instrument for the wind spacecraft. Space Science Reviews, 71, 55 – 77. https://doi.org/10.1007/BF00751326
dc.identifier.citedreferencePizzo, V. ( 1978 ). A three‐dimension model of corotating streams in the solar wind 1. Theoretical foundations. Journal of Geophysical Research, 83, 5563 – 5572. https://doi.org/10.1029/JA083iA12p05563
dc.identifier.citedreferenceRichardson, I. G. ( 1985 ). Low energy ions in co‐rotating interaction regions at 1 AU: Evidence for statical ion acceleration. Planetary and Space Science, 33, 557 – 569. https://doi.org/10.1016/0032-0633(85)90097-2l
dc.identifier.citedreferenceRichardson, I. G. ( 2018 ). Solar wind stream interaction regions throughout the heliosphere. Living Reviews in Solar Physics, 15, 1. https://doi.org/10.1007/s41116-017-0011-z
dc.identifier.citedreferenceRichter, A. K., & Luttrell, A. H. ( 1986 ). Superposed epoch analysis of corotating interaction regions at 0.3 and 1.0 AU: A comparative study. Journal of Geophysical Research: Space Physics, 91 ( A5 ), 5873 – 5878. https://doi.org/10.1029/JA091iA05p05873
dc.identifier.citedreferenceSchwadron, N. A. ( 2002 ). An explanation for strongly underwound magnetic field in co‐rotating rarefaction regions and its relationship to footpoint motion on the sun. Geophysical Research Letters, 29 ( 14 ), 1663. https://doi.org/10.1029/2002GL015028
dc.identifier.citedreferenceSchwadron, N. A., Fisk, L. A., & Gloackler, G. ( 1996 ). Statistical acceleration of interstellar pick‐up ions in co‐rotating interaction regions. Geophysical Research Letters, 23, 2871 – 2874. https://doi.org/10.1029/96GL02833
dc.identifier.citedreferenceSchwadron, N. A., Joyce, C. J., Aly, A., Cohen, C. M. S., Desai, M. I., Mccomas, D., et al. ( 2020 ). A new view of energetic particles from stream interaction regions observed by Parker Solar Probe. Astronomy and Astrophysics, https://doi.org/10.1051/0004-6361/202039352
dc.identifier.citedreferenceSchwadron, N. A., & McComas, D. J. ( 2005 ). The sub‐Parker spiral structure of the heliospheric magnetic field. Geophysical Research Letters, 32, L03112. https://doi.org/10.1029/2004GL021579
dc.identifier.citedreferenceSchwenn, R. ( 1990 ). Large‐scale structure of the interplanetary medium. In R. Schwenn & E. Marsch (Eds.), Physics of the inner heliosphere I. Physics and chemistry in space, space and solar phycics (Vol. 20 ). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-75361-9_3
dc.identifier.citedreferenceSimnett, G. M., & Roelof, E. C. ( 1995 ). Reverse shock acceleration of electrons and protons at mid‐heliolatitudes from 5.3‐3.8 AU. Space Science Reviews, 72, 303.
dc.identifier.citedreferenceSmith, E. J., Tsurutani, B. T., & Rosenberg, R. L. ( 1978 ). Observations of the interplanetary sector structure up to heliographic latitudes of 16°: Pioneer 11. Journal of Geophysical Research, 83, 717 – 724. https://doi.org/10.1029/JA083iA02p00717
dc.identifier.citedreferenceSmith, E. J., & Wolfe, J. H. ( 1976 ). Observations of interaction regions and corotating shocks between one and five AU: Pioneers 10 and 11. Geophysical Research Letters, 3, 137 – 140. https://doi.org/10.1029/GL003i003p00137
dc.identifier.citedreferenceTsurutani, B. T., Smith, E. J., Pyle, K. R., & Simpson, J. A. ( 1982 ). Energetic protons accelerated by corotating shocks: Pioneer 10 and 11 observations from 1 to 6 AU. Journal of Geophysical Research, 87, 7389 – 7404. https://doi.org/10.1029/JA087iA09p07389
dc.identifier.citedreferenceVan Hollebeke, M. A. I., McDonald, F. B., Trainor, J. H., & Von Rosenvinge, T. T. ( 1981 ). coronating energetic particle and fast plasma streams in the inner and outer solar system—Radial dependence and energy spectra, solar wind 4. In H. Rosenbauer (Ed.), Proceedings of the conference held in August 18‐September 1, 1978 in Burghausen, FDR, MPAE‐W‐100‐81‐31 (pp. 497 ). Garching, FDR: Max‐Planck‐Institute für Aeronomie.
dc.identifier.citedreferenceWijsen, N., Aran, A., Pomoell, J., & Poedts, S. ( 2019 ). Interplanetary spread of solar energetic protons near a high‐speed solar wind stream. Astronomy and Astrophysics, 624, A47.
dc.identifier.citedreferenceZhao, L., Li, G., Ebert, R. W., Dayeh, M. A., Desai, M. I., Mason, G. M., et al. ( 2015 ). Modeling transport of energetic particles in corotating interaction regions: A case study. Journal of Geophysical Research: Space Physics, 121, 77 – 92. https://doi.org/10.1002/2015JA021762
dc.identifier.citedreferenceAcuña, M. H., Curtis, D., Scheifele, J. L., Russell, C. T., Schroeder, O., Szabo, A., & Luhmann, J. G. ( 2008 ). The STEREO/IMPACT magnetic field experiment. Space Science Reviews, 136, 203 – 226. https://doi.org/10.1007/s11214-007-9259-2
dc.identifier.citedreferenceAcuña, M. H., Ogilvie, K. W., Baker, D. N., Curtis, S. A., Fairfield, D. H., & Mish, W. H. ( 1995 ). The global geospace science program and its investigations. Space Science Reviews, 71, 5 – 21. https://doi.org/10.1007/BF00751323
dc.identifier.citedreferenceAllen, R. C., Ho, G. C., Jian, L. K., Mason, G. M., Vines, S. K., & Lario, D. ( 2020a ). Predictive capabilities and limitations of stream interaction region observations at different solar longitudes. Space Weather, 18, e2019SW002437. https://doi.org/10.1029/2019SW002437
dc.identifier.citedreferenceAllen, R. C., Ho, G. C., Jian, L. K., Vines, S. K., Bale, S. D., Case, A., et al. ( 2020b ). A living catalog of stream interaction regions in the Parker Solar Probe era. Astronomy and Astrophysics. https://doi.org/10.1051/0004-6361/202039833
dc.identifier.citedreferenceAllen, R. C., Ho, G. C., & Mason, G. M. ( 2019 ). Suprathermal ion abundance variations in corotating interactions regions over two solar cycles. The Astrophysical Journal Letters, 883 ( 1 ), L10. https://doi.org/10.3847/2041-8213/ab3f3f
dc.identifier.citedreferenceAllen, R. C., Lario, D., Odstrcil, D., Ho, G. C., Jian, L. K., Cohen, C. M. S., et al. ( 2020c ). Solar wind streams and stream interaction regions observed by the Parker Solar Probe with corresponding observations at 1 au. The Astrophysical Journal Supplement, 246 ( 2 ), 36. https://doi.org/10.3847/1538-4365/ab578f
dc.identifier.citedreferenceBale, S. D., Goetz, K., Harvey, P. R., Turin, P., Bonnell, J. W., Dudok de Wit, T., et al. ( 2016 ). The FIELDS instrument suite for Solar Probe Plus. Measuring the coronal plasma and magnetic field, plasma waves, and turbulence, and radio signatures of solar transients. Space Science Reviews, 204, 49 – 82. https://doi.org/10.1007/s11214-016-0244-5
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.