Show simple item record

Delivering on the promise of gene therapy for haemophilia

dc.contributor.authorPipe, Steven W.
dc.date.accessioned2021-03-02T21:45:42Z
dc.date.available2022-03-02 16:45:40en
dc.date.available2021-03-02T21:45:42Z
dc.date.issued2021-02
dc.identifier.citationPipe, Steven W. (2021). "Delivering on the promise of gene therapy for haemophilia." Haemophilia : 114-121.
dc.identifier.issn1351-8216
dc.identifier.issn1365-2516
dc.identifier.urihttps://hdl.handle.net/2027.42/166402
dc.description.abstractThe promise of gene therapy is a single treatment (‘one and done’) that leads to steady‐state expression of endogenous factor VIII or factor IX sufficient to achieve a functional cure (free of recurrent haemophilic bleeding) if not normalized haemostasis. The elimination of the need for continued prophylaxis, or factor replacement following trauma or prior to surgery would lead to annual cost savings. Such optimized health and well‐being would be reaching a level of health equity that was unimaginable several decades ago. ‘Before anything else, preparation is the key to success’—Alexander Graham Bell. This quote from the famous inventor, scientist and engineer highlights that, although we currently stand on the threshold of this achievement, delivering on this promise will require broad‐based multistakeholder preparation (scientists, manufacturers, federal regulators, health technology assessors, persons with haemophilia, national advocacy groups and multidisciplinary healthcare teams) with a focused emphasis on education, approval of safe and effective therapies, removal of barriers to access and excellence in clinical delivery.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfactor VIII
dc.subject.othereducation
dc.subject.otherfactor IX
dc.subject.othergene therapy
dc.subject.otherhaemophilia
dc.titleDelivering on the promise of gene therapy for haemophilia
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166402/1/hae14027.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/166402/2/hae14027_am.pdf
dc.identifier.doi10.1111/hae.14027
dc.identifier.sourceHaemophilia
dc.identifier.citedreferenceWang L, Calcedo R, Bell P, et al. Impact of pre‐existing immunity on gene transfer to nonhuman primate liver with adeno‐associated virus 8 vectors. Hum Gene Ther. 2011; 22 ( 11 ): 1389 ‐ 1401.
dc.identifier.citedreferenceMiesbach W, Meijer K, Coppens M, et al. Expression and durable reductions in bleeding and factor IX consumption for up to 4 years following AMT‐060 gene therapy in adults with severe or moderate‐severe hemophilia B. Blood. 2019; 134 ( Supplement_1 ): 2059 ‐ 2059.
dc.identifier.citedreferenceSalas D, Kwikkers KL, Zabaleta N, et al. Immunoadsorption enables successful rAAV5‐mediated repeated hepatic gene delivery in nonhuman primates. Blood Adv. 2019; 3 ( 17 ): 2632 ‐ 2641.
dc.identifier.citedreferenceColella P, Ronzitti G, Mingozzi F. Emerging issues in AAV‐mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018; 8: 87 ‐ 104.
dc.identifier.citedreferenceSwystun LL, Lillicrap D. Genetic regulation of plasma von Willebrand factor levels in health and disease. J Thromb Haemost. 2018; 16 ( 12 ): 2375 ‐ 2390.
dc.identifier.citedreferenceSwystun LL, Ogiwara K, Rawley O, et al. Genetic determinants of VWF clearance and FVIII binding modify FVIII pharmacokinetics in pediatric hemophilia A patients. Blood. 2019; 134 ( 11 ): 880 ‐ 891.
dc.identifier.citedreferencePierce GF, Iorio A. Past, present and future of haemophilia gene therapy: From vectors and transgenes to known and unknown outcomes. Haemophilia. 2018; 24 ( Suppl 6 ): 60 ‐ 67.
dc.identifier.citedreferenceGeisler C, Jarvis DL. Adventitious viruses in insect cell lines used for recombinant protein expression. Protein Expr Purif. 2018; 144: 25 ‐ 32.
dc.identifier.citedreferenceKaczmarek R. Do adventitious viruses carried by insect cell lines producing AAV vectors pose a safety risk in gene therapy? Haemophilia. 2018; 24 ( 6 ): 843 ‐ 844.
dc.identifier.citedreferenceCellular & gene therapy guidances. https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances. Accessed January 21, 2020.
dc.identifier.citedreferenceStatement from FDA Commissioner Scott Gottlieb, M.D. and Peter Marks, M.D., Ph.D., Director of the Center for Biologics Evaluation and Research on new policies to advance development of safe and effective cell and gene therapies [press release]. https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-peter-marks-md-phd-director-center-biologics. Accessed January 21, 2020.
dc.identifier.citedreferenceStatement on modernizing human gene therapy oversight [press release]. https://www.nih.gov/about-nih/who-we-are/nih-director/statements/statement-modernizing-human-gene-therapy-oversight. Accessed January 21, 2020.
dc.identifier.citedreferenceIorio A, Skinner MW, Clearfield E, et al. Core outcome set for gene therapy in haemophilia: results of the coreHEM multistakeholder project. Haemophilia. 2018; 24 ( 4 ): e167 ‐ e172.
dc.identifier.citedreferenceICER to Assess Gene Therapy for Hemophilia A [press release]. https://icer-review.org/announcements/icer-to-assess-gene-therapy-for-hemophilia-a/. Accessed January 21, 2020.
dc.identifier.citedreferenceAMCP partnership forum: designing benefits and payment models for innovative high‐investment medications. J Manag Care Spec Pharm. 2019; 25 ( 2 ): 156 ‐ 162.
dc.identifier.citedreferencePetrich J, Marchese D, Jenkins C, Storey M, Blind J. Gene replacement therapy: a primer for the health‐system pharmacist. J Pharm Pract. 2019: 897190019854962. doi: 10.1177/0897190019854962.
dc.identifier.citedreferenceStoner N. Are UK hospital pharmacy departments ready for the rise of gene therapy medicinal products? Expert Opin Biol Ther. 2018; 18 ( 8 ): 837 ‐ 840.
dc.identifier.citedreferenceMingot‐Castellano ME, Parra R, Nunez R, Martorell M. Improvement in clinical outcomes and replacement factor VIII use in patients with haemophilia A after factor VIII pharmacokinetic‐guided prophylaxis based on Bayesian models with myPKFiT((R)). Haemophilia. 2018; 24 ( 5 ): e338 ‐ e343.
dc.identifier.citedreferenceWeyand AC, Pipe SW. New therapies for hemophilia. Blood. 2019; 133 ( 5 ): 389 ‐ 398.
dc.identifier.citedreferencePai M, Key NS, Skinner M, et al. NHF‐McMaster guideline on care models for haemophilia management. Haemophilia. 2016; 22 ( Suppl 3 ): 6 ‐ 16.
dc.identifier.citedreferenceVarmus H. Getting ready for gene‐based medicine. N Engl J Med. 2002; 347 ( 19 ): 1526 ‐ 1527.
dc.identifier.citedreferencePeyvandi F, Lillicrap D, Mahlangu J, et al. Gene therapy knowledge and perceptions: results of an international ISTH survey. Res Pract Thromb Haemost. 2019; 3: 470 ‐ 471.
dc.identifier.citedreferencePierce GF, Coffin D, Members of the WFH Gene Therapy Round Table Program Committee and Organizing Committee. The 1st WFH gene therapy round table: understanding the landscape and challenges of gene therapy for haemophilia around the world. Haemophilia. 2019; 25 ( 2 ): 189 ‐ 194.
dc.identifier.citedreferenceHurst S, Warren C, Pasi KJ. Gene therapy in hemophilia: an assessment of hematologists’ knowledge gaps and attitudes. Blood. 2018; 132 ( Supplement 1 ): 3485 ‐ 3485.
dc.identifier.citedreferenceMiesbach W, O’Mahony B, Key NS, Makris M. How to discuss gene therapy for haemophilia? A patient and physician perspective. Haemophilia. 2019; 25 ( 4 ): 545 ‐ 557.
dc.identifier.citedreferenceSidonio RF Jr, Pipe SW, Callaghan MU, Valentino LA, Monahan PE, Croteau SE. Discussing AAV gene therapy with hemophilia patients: a practical guide. Blood Rev. 2020. under review.
dc.identifier.citedreferenceNathwani AC. Gene therapy for hemophilia. Hematology. 2019; 2019 ( 1 ): 1 ‐ 8.
dc.identifier.citedreferencePeyvandi F, Garagiola I. Clinical advances in gene therapy updates on clinical trials of gene therapy in haemophilia. Haemophilia. 2019; 25 ( 5 ): 738 ‐ 746.
dc.identifier.citedreferencePasi KJ, Rangarajan S, Mitchell N, et al. Multiyear follow‐up of AAV5‐hFVIII‐SQ gene therapy for hemophilia A. N Engl J Med. 2020; 382 ( 1 ): 29 ‐ 40.
dc.identifier.citedreferenceHigh KA, George LA, Eyster ME, et al. A Phase 1/2 trial of investigational Spk‐8011 in hemophilia a demonstrates durable expression and prevention of bleeds. Blood. 2018; 132 ( Supplement 1 ): 487 ‐ 487.
dc.identifier.citedreferenceVon Drygalski A, Giermasz A, Castaman G, et al. Etranacogene dezaparvovec (AMT‐061 phase 2b): normal/near normal FIX activity and bleed cessation in hemophilia B. Blood Adv. 2019; 3 ( 21 ): 3241 ‐ 3247.
dc.identifier.citedreferenceGeorge LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high‐specific‐activity factor IX variant. N Engl J Med. 2017; 377 ( 23 ): 2215 ‐ 2227.
dc.identifier.citedreferenceJiang H, Couto LB, Patarroyo‐White S, et al. Effects of transient immunosuppression on adenoassociated, virus‐mediated, liver‐directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006; 108 ( 10 ): 3321 ‐ 3328.
dc.identifier.citedreferenceScallan CD, Jiang H, Liu T, et al. Human immunoglobulin inhibits liver transduction by AAV vectors at low AAV2 neutralizing titers in SCID mice. Blood. 2006; 107 ( 5 ): 1810 ‐ 1817.
dc.identifier.citedreferenceManno CS, Pierce GF, Arruda VR, et al. Successful transduction of liver in hemophilia by AAV‐Factor IX and limitations imposed by the host immune response. Nat Med. 2006; 12 ( 3 ): 342 ‐ 347.
dc.identifier.citedreferenceKruzik A, Koppensteiner H, Fetahagic D, et al. Detection of biologically relevant low‐titer neutralizing antibodies against adeno‐associated virus require sensitive in vitro assays. Hum Gene Ther Methods. 2019; 30 ( 2 ): 35 ‐ 43.
dc.identifier.citedreferenceKruzik A, Fetahagic D, Hartlieb B, et al. Prevalence of anti‐adeno‐associated virus immune responses in international cohorts of healthy donors. Mol Ther Methods Clin Dev. 2019; 14: 126 ‐ 133.
dc.identifier.citedreferenceStanford S, Pink R, Creagh D, et al. Adenovirus‐associated antibodies in UK cohort of hemophilia patients: a seroprevalence study of the presence of adenovirus‐associated virus vector‐serotypes AAV5 and AAV8 neutralizing activity and antibodies in patients with hemophilia A. Res Pract Thromb Haemost. 2019; 3 ( 2 ): 261 ‐ 267.
dc.identifier.citedreferenceMajowicz A, Nijmeijer B, Lampen MH, et al. Therapeutic hFIX activity achieved after single AAV5‐hFIX treatment in hemophilia B patients and NHPs with pre‐existing anti‐AAV5 NABs. Mol Ther Methods Clin Dev. 2019; 14: 27 ‐ 36.
dc.identifier.citedreferenceGouw SC, van der Bom JG, Auerswald G, Ettinghausen CE, Tedgard U, van den Berg HM. Recombinant versus plasma‐derived factor VIII products and the development of inhibitors in previously untreated patients with severe hemophilia A: the CANAL cohort study. Blood. 2007; 109 ( 11 ): 4693 ‐ 4697.
dc.identifier.citedreferencePeyvandi F, Mannucci PM, Garagiola I, et al. A randomized trial of factor VIII and neutralizing antibodies in hemophilia A. N Engl J Med. 2016; 374 ( 21 ): 2054 ‐ 2064.
dc.identifier.citedreferenceRota M, Cortesi PA, Steinitz‐Trost KN, Reininger AJ, Gringeri A, Mantovani LG. Meta‐analysis on incidence of inhibitors in patients with haemophilia A treated with recombinant factor VIII products. Blood Coagul Fibrinolysis. 2017; 28 ( 8 ): 627 ‐ 637.
dc.identifier.citedreferenceArruda VR, Samelson‐Jones BJ. Gene therapy for immune tolerance induction in hemophilia with inhibitors. J Thromb Haemost. 2016; 14 ( 6 ): 1121 ‐ 1134.
dc.identifier.citedreferenceAnnoni A, Cantore A, Della Valle P, et al. Liver gene therapy by lentiviral vectors reverses anti‐factor IX pre‐existing immunity in haemophilic mice. EMBO Mol Med. 2013; 5 ( 11 ): 1684 ‐ 1697.
dc.identifier.citedreferenceJohnson TN, Tucker GT, Tanner MS, Rostami‐Hodjegan A. Changes in liver volume from birth to adulthood: a meta‐analysis. Liver Transpl. 2005; 11 ( 12 ): 1481 ‐ 1493.
dc.identifier.citedreferenceMilani M, Annoni A, Moalli F, et al. Phagocytosis‐shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci Transl Med. 2019; 11 ( 493 ): eaav7325.
dc.identifier.citedreferenceCantore A, Ranzani M, Bartholomae CC, et al. Liver‐directed lentiviral gene therapy in a dog model of hemophilia. B. Sci Transl Med. 2015; 7 ( 277 ): 277ra28.
dc.identifier.citedreferenceButterfield JSS, Hege KM, Herzog RW, Kaczmarek R. A molecular revolution in the treatment of hemophilia. Mol Ther. 2019; 28 ( 4 ): 997 ‐ 1015.
dc.identifier.citedreferenceSamelson‐Jones BJ, Arruda VR. Protein‐engineered coagulation factors for hemophilia gene therapy. Mol Ther Methods Clin Dev. 2019; 12: 184 ‐ 201.
dc.identifier.citedreferenceSamelson‐Jones BJ, Finn JD, George LA, Camire RM, Arruda VR. Hyperactivity of factor IX Padua (R338L) depends on factor VIIIa cofactor activity. JCI insight. 2019; 4 ( 14 ): e128683.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.